Established in 1985, the MIT Laser Biomedical Research Center (LBRC) has continued to consolidate and expand through sustained NIH funding. Under the proposed program, the research and development will progress through core, collaborative and outside projects, the training and education will be carried out at the undergraduate, graduate and postgraduate level, while the information dissemination will be maintained through our laboratory's publication -The Spectrograph- and various other communications. Experimental techniques that merge optical spectroscopy, imaging, scattering, and interferometry will be applied to study the biophysics and biochemistry of healthy and diseased biological structures from the subcellular to the entire-organ scale. Probe-based spectral diagnosis instruments based on near-infrared Raman scattering, intrinsic fluorescence, diffuse reflectance, and single light scattering will provide complementary data on human disease and the possibility of combining these techniques into a single, versatile instrument will be explored. This multimodal investigation will be applied for diagnostics in various organs, including cervix, oral cavity, Barrett's esophagus, artery, breast, skin, as well as for transcutaneous measurements of blood constituents. Spectroscopic imaging will advance in the direction of wide-area tissue characterization and tomography. Elastic light scattering studies will contribute to our understanding of tissue organization at the sub-micron scale. New technology on quantitative interferometric microscopy will be exploited for measuring cellular structures at the nanometer level. Rapid cell motions associated with neuronal action potentials and membrane fluctuations will be quantified at the sub-millisecond scale. The future LBRC research effort will channel on existing areas, as well as on new and extremely exciting core projects. Several additional, promising collaborative projects will be established. Modern facilities will be made available and new core research staff and outside collaborators will join the center.
Showing the most recent 10 out of 178 publications