This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. This project proposes the study of transcriptional regulation in Bacillus subtilis by direct, in vivo, observation using state-of-the-art two-photon fluorescence correlation spectroscopy. The project involves the study of two transcriptional repressors from B. subtilis, CggR and CcpN. Much work has been done in vitro on CggR and CcpN (Zorrilla et al, 2007a;Zorrilla et al, 2007b;Zorrilla et al, 2008a;Zorrilla et al, 2008b) since their discovery in the sequencing of the B. subtilis genome(Kunst et al, 1997). Both transcriptional repressors control opposite directions in the carbon metabolic cycle in gram positive bacteria through the production of metabolic enzymes. We propose to directly observe transcriptional regulation in vivo at the single molecule level. Using genetically engineered strains of B. subtilis, containing fluorescent protein fusions with CggR, CcpN and related factors under native promoters, we will apply the techniques of point and scanning two photon fluorescence correlation spectroscopy (FCS and sFCS), Number and Brightness (N&B) and raster image correlation spectroscopy (RICS). We will elucidate mechanisms of transcriptional regulation that cannot be observed by in vitro investigation.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR003155-25
Application #
8171006
Study Section
Special Emphasis Panel (ZRG1-BCMB-E (41))
Project Start
2010-08-01
Project End
2011-07-31
Budget Start
2010-08-01
Budget End
2011-07-31
Support Year
25
Fiscal Year
2010
Total Cost
$4,731
Indirect Cost
Name
University of California Irvine
Department
Biomedical Engineering
Type
Schools of Engineering
DUNS #
046705849
City
Irvine
State
CA
Country
United States
Zip Code
92697
Kim, Seong M; Nguyen, Tricia T; Ravi, Archna et al. (2018) PTEN Deficiency and AMPK Activation Promote Nutrient Scavenging and Anabolism in Prostate Cancer Cells. Cancer Discov 8:866-883
Liang, Elena I; Mah, Emma J; Yee, Albert F et al. (2017) Correlation of focal adhesion assembly and disassembly with cell migration on nanotopography. Integr Biol (Camb) 9:145-155
Chen, Hongtao; Gratton, Enrico; Digman, Michelle A (2016) Self-assisted optothermal trapping of gold nanorods under two-photon excitation. Methods Appl Fluoresc 4:035003
Digiacomo, Luca; Digman, Michelle A; Gratton, Enrico et al. (2016) Development of an image Mean Square Displacement (iMSD)-based method as a novel approach to study the intracellular trafficking of nanoparticles. Acta Biomater 42:189-198
Malacrida, Leonel; Astrada, Soledad; Briva, Arturo et al. (2016) Spectral phasor analysis of LAURDAN fluorescence in live A549 lung cells to study the hydration and time evolution of intracellular lamellar body-like structures. Biochim Biophys Acta 1858:2625-2635
Chen, Hongtao; Gratton, Enrico; Digman, Michelle A (2015) Spectral properties and dynamics of gold nanorods revealed by EMCCD-based spectral phasor method. Microsc Res Tech 78:283-93
Golfetto, Ottavia; Hinde, Elizabeth; Gratton, Enrico (2015) The Laurdan spectral phasor method to explore membrane micro-heterogeneity and lipid domains in live cells. Methods Mol Biol 1232:273-90
Willenberg, Rafer; Steward, Oswald (2015) Nonspecific labeling limits the utility of Cre-Lox bred CST-YFP mice for studies of corticospinal tract regeneration. J Comp Neurol 523:2665-82
Scarlata, Suzanne; Golebiewska, Urszula (2014) Linking alpha-synuclein properties with oxidation: a hypothesis on a mechanism underling cellular aggregation. J Bioenerg Biomembr 46:93-8
Sharma, Himanshu; Digman, Michelle A; Felsinger, Natasha et al. (2014) Enhanced emission of fluorophores on shrink-induced wrinkled composite structures. Opt Mater Express 4:753-763

Showing the most recent 10 out of 200 publications