This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Study of viral spread in 3D cultures. The most relevant system for modeling viral spread would be in solid cell masses. As shown in the preliminary data, we have been able to image individual infected cells in solid masses by reconstituting infected and uninfected cells into spheres on Matrigel. We will first carry out analysis on AdEGFPuci-infected 293 cells. We will first infect a monolayer of 293 cells with AdEGFPuci, and 6 hr after infection, the infected cells will be trypsinized. The infected single cell suspensions will be mixed with an excess of uninfected 293 cells, and plated onto Matrigel matrices to allow formation of cell aggregates and spheres. The spheres will be monitored daily for appearance of green fluorescent cells and fluorescent Z-stack montages will be recorded and compiled for any sphere that initially show one infected cell. A confocal microscope suitable for these experiments is available in the campus optical biology shared resource. It seems possible that the rate of virus spread may be more rapid in 3D structures than in monolayer, or that the number of secondarily infected cells may be larger. It will also be possible to determine the effects of initial MOI on spread through 3D cultures.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR003155-26
Application #
8365770
Study Section
Special Emphasis Panel (ZRG1-BCMB-K (40))
Project Start
2011-08-20
Project End
2012-06-30
Budget Start
2011-08-20
Budget End
2012-06-30
Support Year
26
Fiscal Year
2011
Total Cost
$5,523
Indirect Cost
Name
University of California Irvine
Department
Biomedical Engineering
Type
Schools of Engineering
DUNS #
046705849
City
Irvine
State
CA
Country
United States
Zip Code
92697
Kim, Seong M; Nguyen, Tricia T; Ravi, Archna et al. (2018) PTEN Deficiency and AMPK Activation Promote Nutrient Scavenging and Anabolism in Prostate Cancer Cells. Cancer Discov 8:866-883
Liang, Elena I; Mah, Emma J; Yee, Albert F et al. (2017) Correlation of focal adhesion assembly and disassembly with cell migration on nanotopography. Integr Biol (Camb) 9:145-155
Chen, Hongtao; Gratton, Enrico; Digman, Michelle A (2016) Self-assisted optothermal trapping of gold nanorods under two-photon excitation. Methods Appl Fluoresc 4:035003
Digiacomo, Luca; Digman, Michelle A; Gratton, Enrico et al. (2016) Development of an image Mean Square Displacement (iMSD)-based method as a novel approach to study the intracellular trafficking of nanoparticles. Acta Biomater 42:189-198
Malacrida, Leonel; Astrada, Soledad; Briva, Arturo et al. (2016) Spectral phasor analysis of LAURDAN fluorescence in live A549 lung cells to study the hydration and time evolution of intracellular lamellar body-like structures. Biochim Biophys Acta 1858:2625-2635
Chen, Hongtao; Gratton, Enrico; Digman, Michelle A (2015) Spectral properties and dynamics of gold nanorods revealed by EMCCD-based spectral phasor method. Microsc Res Tech 78:283-93
Golfetto, Ottavia; Hinde, Elizabeth; Gratton, Enrico (2015) The Laurdan spectral phasor method to explore membrane micro-heterogeneity and lipid domains in live cells. Methods Mol Biol 1232:273-90
Willenberg, Rafer; Steward, Oswald (2015) Nonspecific labeling limits the utility of Cre-Lox bred CST-YFP mice for studies of corticospinal tract regeneration. J Comp Neurol 523:2665-82
Scarlata, Suzanne; Golebiewska, Urszula (2014) Linking alpha-synuclein properties with oxidation: a hypothesis on a mechanism underling cellular aggregation. J Bioenerg Biomembr 46:93-8
Sharma, Himanshu; Digman, Michelle A; Felsinger, Natasha et al. (2014) Enhanced emission of fluorophores on shrink-induced wrinkled composite structures. Opt Mater Express 4:753-763

Showing the most recent 10 out of 200 publications