The S.A.G.E. (Statistical Analysis for Genetic Epidemiology) computer program package provides researchers with the tools necessary for various types of statistical genetic analysis of human family data. Prior to the funding of this resource, few such computer programs were available, and those in existence were usually poorly documented and not easily transportable from one type of computer to another. This subproject has addressed these problems by developing computer programs for genetic analysis that are well documented, and that are written in ANSI standard FORTRAN 77 for easy portability between different computers and operating systems. This approach was chosen, rather than writing a different version of the programs for each possible combination of computer and operating system, because it is less expensive to write and maintain a single version of each program than to maintain multiple versions. ANSI standard FORTRAN 77 was chosen because at the time of initial funding of this resource it was the only language available with standards that were widely implemented in compilers used by the genetics community. We released Version 2.2 of this program package in June, 1994. We are currently in the design stages of a new version of the programs that will be written in C++, a structured computer programming language that at present has several advantages over FORTRAN. We are also implementing new theoretical developments into the analysis programs, paying particular attention to including methods of analysis that are requested by our users and collaborators.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR003655-11
Application #
5224642
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
11
Fiscal Year
1996
Total Cost
Indirect Cost
Elston, Robert C; Satagopan, Jaya; Sun, Shuying (2017) Statistical Genetic Terminology. Methods Mol Biol 1666:1-9
Thota, Prashanthi N; Zackria, Shamiq; Sanaka, Madhusudhan R et al. (2017) Racial Disparity in the Sex Distribution, the Prevalence, and the Incidence of Dysplasia in Barrett's Esophagus. J Clin Gastroenterol 51:402-406
Liang, Jingjing; Cade, Brian E; Wang, Heming et al. (2016) Comparison of Heritability Estimation and Linkage Analysis for Multiple Traits Using Principal Component Analyses. Genet Epidemiol 40:222-32
Wang, Chuchu; Wu, Manman; Qian, Jin et al. (2016) Identification of rare variants in TNNI3 with atrial fibrillation in a Chinese GeneID population. Mol Genet Genomics 291:79-92
Lemas, Dominick J; Klimentidis, Yann C; Aslibekyan, Stella et al. (2016) Polymorphisms in stearoyl coa desaturase and sterol regulatory element binding protein interact with N-3 polyunsaturated fatty acid intake to modify associations with anthropometric variables and metabolic phenotypes in Yup'ik people. Mol Nutr Food Res 60:2642-2653
Day, Kenneth; Waite, Lindsay L; Alonso, Arnald et al. (2016) Heritable DNA Methylation in CD4+ Cells among Complex Families Displays Genetic and Non-Genetic Effects. PLoS One 11:e0165488
Justice, Cristina M; Bishop, Kevin; Carrington, Blake et al. (2016) Evaluation of IRX Genes and Conserved Noncoding Elements in a Region on 5p13.3 Linked to Families with Familial Idiopathic Scoliosis and Kyphosis. G3 (Bethesda) 6:1707-12
Petrovic, Dusan; Pivin, Edward; Ponte, Belen et al. (2016) Sociodemographic, behavioral and genetic determinants of allostatic load in a Swiss population-based study. Psychoneuroendocrinology 67:76-85
Castiblanco, John; Sarmiento-Monroy, Juan Camilo; Mantilla, Ruben Dario et al. (2015) Familial Aggregation and Segregation Analysis in Families Presenting Autoimmunity, Polyautoimmunity, and Multiple Autoimmune Syndrome. J Immunol Res 2015:572353
Shetty, Priya B; Tang, Hua; Feng, Tao et al. (2015) Variants for HDL-C, LDL-C, and triglycerides identified from admixture mapping and fine-mapping analysis in African American families. Circ Cardiovasc Genet 8:106-13

Showing the most recent 10 out of 922 publications