This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. It is well known that pedigree/family data record information on the coexistence in founder haplotypes of alleles at nearby loci and the cotransmission from parent to offspring that reveal different, but complementary, profiles of the genetic architecture. Either conventional linkage analysis that assumes linkage equilibrium or family-based association tests (FBATs) capture only partial information, leading to inefficiency. For example, FBATs will fail to detect even very tight linkage in the case where no allelic association exists, while a violation of the assumption of linkage equilibrium will result in biased estimation and reduced efficiency in linkage mapping. Using a data augmentation technique and the EM algorithm, we developed a likelihood-based approach that embeds both linkage and association analyses into a unified framework for general pedigree data. Relative to either linkage or association analysis, the proposed approach is expected to have greater estimation accuracy and power. Monte Carlo simulations support these theoretical expectations and demonstrate that our new methodology: (1) is more powerful than either FBATs or classic linkage analysis; (2) can unbiasedly estimate genetic parameters regardless of whether association exists, thus remedying the bias and less precision of traditional linkage analysis in the presence of association; and (3) is capable of identifying tight linkage alone. The new approach also holds the theoretical advantage that it can extract statistical information to the maximum extent and thereby improve mapping accuracy and power because it integrates multilocus population-based association and pedigree-based linkage analysis into a coherent framework. Furthermore, the method is numerically stable and computationally efficient, as compared to existing parametric methods that use the simplex algorithm or Newton-type methods to maximize high-order multidimensional likelihood functions.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR003655-21
Application #
7420645
Study Section
Special Emphasis Panel (ZRG1-GGG-J (40))
Project Start
2006-08-01
Project End
2007-07-31
Budget Start
2006-08-01
Budget End
2007-07-31
Support Year
21
Fiscal Year
2006
Total Cost
$14,777
Indirect Cost
Name
Case Western Reserve University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
077758407
City
Cleveland
State
OH
Country
United States
Zip Code
44106
Elston, Robert C; Satagopan, Jaya; Sun, Shuying (2017) Statistical Genetic Terminology. Methods Mol Biol 1666:1-9
Thota, Prashanthi N; Zackria, Shamiq; Sanaka, Madhusudhan R et al. (2017) Racial Disparity in the Sex Distribution, the Prevalence, and the Incidence of Dysplasia in Barrett's Esophagus. J Clin Gastroenterol 51:402-406
Liang, Jingjing; Cade, Brian E; Wang, Heming et al. (2016) Comparison of Heritability Estimation and Linkage Analysis for Multiple Traits Using Principal Component Analyses. Genet Epidemiol 40:222-32
Wang, Chuchu; Wu, Manman; Qian, Jin et al. (2016) Identification of rare variants in TNNI3 with atrial fibrillation in a Chinese GeneID population. Mol Genet Genomics 291:79-92
Lemas, Dominick J; Klimentidis, Yann C; Aslibekyan, Stella et al. (2016) Polymorphisms in stearoyl coa desaturase and sterol regulatory element binding protein interact with N-3 polyunsaturated fatty acid intake to modify associations with anthropometric variables and metabolic phenotypes in Yup'ik people. Mol Nutr Food Res 60:2642-2653
Day, Kenneth; Waite, Lindsay L; Alonso, Arnald et al. (2016) Heritable DNA Methylation in CD4+ Cells among Complex Families Displays Genetic and Non-Genetic Effects. PLoS One 11:e0165488
Justice, Cristina M; Bishop, Kevin; Carrington, Blake et al. (2016) Evaluation of IRX Genes and Conserved Noncoding Elements in a Region on 5p13.3 Linked to Families with Familial Idiopathic Scoliosis and Kyphosis. G3 (Bethesda) 6:1707-12
Petrovic, Dusan; Pivin, Edward; Ponte, Belen et al. (2016) Sociodemographic, behavioral and genetic determinants of allostatic load in a Swiss population-based study. Psychoneuroendocrinology 67:76-85
Greer, Katarina B; Falk, Gary W; Bednarchik, Beth et al. (2015) Associations of Serum Adiponectin and Leptin With Barrett's Esophagus. Clin Gastroenterol Hepatol 13:2265-72
Alwan, Heba; Ehret, Georg; Ponte, Belen et al. (2015) Heritability of ambulatory and office blood pressure in the Swiss population. J Hypertens 33:2061-7

Showing the most recent 10 out of 922 publications