This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Translation studies have been initiated to assess the combined effect of genetic loci from recently accomplished genome-wide association studies and the existing risk factors for early disease prediction. We propose a bagging optimal receiver operating characteristic (ROC) curve method to facilitate this research. Through simulation and real data application, we compared the new method with the commonly used allele counting method and logistic regression, and found that the new method yields a better performance. The new method was applied on the Wellcome Trust data set to form a predictive genetic test for rheumatoid arthritis. The formed test reached an area under the curve (AUC) value of 0.7.
Showing the most recent 10 out of 922 publications