PPAR? is a member of the nuclear receptor superfamily of ligand activated transcription factors. PPAR??has been implicated as a central regulator of adipogenesis. It was also elucidated as the receptor for the emerging class of anti-diabetic drugs known as thiazolidinedione, suggesting that it may function to curb the development of type II diabetes. We recently generated PPAR?-null mice. Embryos lacking both alleles of the gene die around day 10 of gestation. At this stage, the only organ expressing PPAR? is the placenta, suggesting that the mutant embryos die due to a deficiency in a structure of the PPAR?-dependent placental function. Nevertheless, the development, as well as the structure of the PPAR?-deficient placenta is grossly similar to that of wild-type placenta. This leads us to believe that the placental function under the control of PPAR? is probably metabolic rather than developmental. PPAR? functions a s heterodimeric complex with the RXR? nuclear receptor. Previous studies of RXR?-null mice detected a change in the structure of lipid droplets in the placenta. RXR??caters to a wide menu of heterodimeric partners, such as retinoic acid, thyroid hormone, vitamin D receptors and PPARs. Of those, given the known functions of PPAR? in lipid acquisition by adipose cells, it is conceivable that it might execute a similar function in the placenta. Therefore, the previously detected lipid droplet defect of RXR? null mice could be an attribute of its heterodimeric complex with PPAR?. Advanced microscopic methods will enable us to address this issue using PPAR? null placentas. RXR?-null mice die primarily due to a heart defect that involves, prior to the manifestation of a thin septum, precocious cardiomyocyte differentiation. There are several strong indications that this phenotype is non-autonomous. The early manifestations of this defect can be detected only by using high-resolution microscopic methods. It is therefore of great clinical significance to determine whether this phenotype can be recapitulated in the PPAR? nulls, since it could imply that the non-autonomous source of the heart defect stems from a deficiency in a PPAR? -dependent placental function. Moreover, it will establish a heretofore unknown linkage between the integrity of the placenta and heart development. We have recently begun these studies, which will first involve electron microscopic characterization of the placenta of wild-type and knockout mice and the structure of cardiomyocytes in embryonic normal and knock-out mice.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR004050-10
Application #
6282158
Study Section
Project Start
1998-04-01
Project End
1999-03-31
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
10
Fiscal Year
1998
Total Cost
Indirect Cost
Name
University of California San Diego
Department
Type
DUNS #
077758407
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Funakoshi, Shunsuke; Miki, Kenji; Takaki, Tadashi et al. (2016) Enhanced engraftment, proliferation, and therapeutic potential in heart using optimized human iPSC-derived cardiomyocytes. Sci Rep 6:19111
Rubio-Marrero, Eva N; Vincelli, Gabriele; Jeffries, Cy M et al. (2016) Structural Characterization of the Extracellular Domain of CASPR2 and Insights into Its Association with the Novel Ligand Contactin1. J Biol Chem 291:5788-802
Yin, Xinghua; Kidd, Grahame J; Ohno, Nobuhiko et al. (2016) Proteolipid protein-deficient myelin promotes axonal mitochondrial dysfunction via altered metabolic coupling. J Cell Biol 215:531-542
Zhao, Claire Y; Greenstein, Joseph L; Winslow, Raimond L (2016) Roles of phosphodiesterases in the regulation of the cardiac cyclic nucleotide cross-talk signaling network. J Mol Cell Cardiol 91:215-27
Rajagopal, Vijay; Bass, Gregory; Walker, Cameron G et al. (2015) Examination of the Effects of Heterogeneous Organization of RyR Clusters, Myofibrils and Mitochondria on Ca2+ Release Patterns in Cardiomyocytes. PLoS Comput Biol 11:e1004417
Schachtrup, Christian; Ryu, Jae Kyu; Mammadzada, Könül et al. (2015) Nuclear pore complex remodeling by p75(NTR) cleavage controls TGF-? signaling and astrocyte functions. Nat Neurosci 18:1077-80
Sanders, Matthew A; Madoux, Franck; Mladenovic, Ljiljana et al. (2015) Endogenous and Synthetic ABHD5 Ligands Regulate ABHD5-Perilipin Interactions and Lipolysis in Fat and Muscle. Cell Metab 22:851-60
Takeshima, Hiroshi; Hoshijima, Masahiko; Song, Long-Sheng (2015) Ca²? microdomains organized by junctophilins. Cell Calcium 58:349-56
Mills, Elizabeth A; Davis, Chung-ha O; Bushong, Eric A et al. (2015) Astrocytes phagocytose focal dystrophies from shortening myelin segments in the optic nerve of Xenopus laevis at metamorphosis. Proc Natl Acad Sci U S A 112:10509-14
Kim, K-Y; Perkins, G A; Shim, M S et al. (2015) DRP1 inhibition rescues retinal ganglion cells and their axons by preserving mitochondrial integrity in a mouse model of glaucoma. Cell Death Dis 6:e1839

Showing the most recent 10 out of 384 publications