This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.The goal of this study is to identify the mechanism by which bacteria respire uranium and chromium. For this work, we are focusing on three strains of bacteria, two Shewanella and a Desulfotomaculum, able to respire or reduce both metals. Using advanced microscopic techniques combined with molecular techniques, we hope to identify the genes and proteins involved in the process. TEM, EFTEM and EELS are used to identify the localization and the oxidation state of the metals within the cell which could provide insight into the mechanism involved. Specifically, it will help identify the location of the reduction activity within the cell. The practical application of this work is to improve the knowledge basis for the design of bioremediation strategies. Reduced U and Cr are insoluble and less toxic than their oxidized counterparts. By promoting reduction in a groundwater environment, the toxic metals are immobilized and are less likely to affect drinking or surface water downstream.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR004050-20
Application #
7722399
Study Section
Special Emphasis Panel (ZRG1-CDF-2 (40))
Project Start
2008-05-01
Project End
2009-04-30
Budget Start
2008-05-01
Budget End
2009-04-30
Support Year
20
Fiscal Year
2008
Total Cost
$9,756
Indirect Cost
Name
University of California San Diego
Department
Neurosciences
Type
Schools of Medicine
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Funakoshi, Shunsuke; Miki, Kenji; Takaki, Tadashi et al. (2016) Enhanced engraftment, proliferation, and therapeutic potential in heart using optimized human iPSC-derived cardiomyocytes. Sci Rep 6:19111
Rubio-Marrero, Eva N; Vincelli, Gabriele; Jeffries, Cy M et al. (2016) Structural Characterization of the Extracellular Domain of CASPR2 and Insights into Its Association with the Novel Ligand Contactin1. J Biol Chem 291:5788-802
Yin, Xinghua; Kidd, Grahame J; Ohno, Nobuhiko et al. (2016) Proteolipid protein-deficient myelin promotes axonal mitochondrial dysfunction via altered metabolic coupling. J Cell Biol 215:531-542
Zhao, Claire Y; Greenstein, Joseph L; Winslow, Raimond L (2016) Roles of phosphodiesterases in the regulation of the cardiac cyclic nucleotide cross-talk signaling network. J Mol Cell Cardiol 91:215-27
Khakh, Baljit S; Sofroniew, Michael V (2015) Diversity of astrocyte functions and phenotypes in neural circuits. Nat Neurosci 18:942-52
Ju, Won-Kyu; Kim, Keun-Young; Noh, You Hyun et al. (2015) Increased mitochondrial fission and volume density by blocking glutamate excitotoxicity protect glaucomatous optic nerve head astrocytes. Glia 63:736-53
Rajagopal, Vijay; Bass, Gregory; Walker, Cameron G et al. (2015) Examination of the Effects of Heterogeneous Organization of RyR Clusters, Myofibrils and Mitochondria on Ca2+ Release Patterns in Cardiomyocytes. PLoS Comput Biol 11:e1004417
Schachtrup, Christian; Ryu, Jae Kyu; Mammadzada, Könül et al. (2015) Nuclear pore complex remodeling by p75(NTR) cleavage controls TGF-? signaling and astrocyte functions. Nat Neurosci 18:1077-80
Sanders, Matthew A; Madoux, Franck; Mladenovic, Ljiljana et al. (2015) Endogenous and Synthetic ABHD5 Ligands Regulate ABHD5-Perilipin Interactions and Lipolysis in Fat and Muscle. Cell Metab 22:851-60
Takeshima, Hiroshi; Hoshijima, Masahiko; Song, Long-Sheng (2015) Ca²? microdomains organized by junctophilins. Cell Calcium 58:349-56

Showing the most recent 10 out of 384 publications