This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Azides, which are extremely rare in biological systems, are emerging as attractive chemical handles for bioconjugation. In particular, the Cu(I) catalyzed 1,3-dipolar cyclization of azides with terminal alkynes to give stable triazoles has been employed for tagging a variety of biomolecules including proteins, nucleic acids, lipids, and saccharides. The cycloaddition has also been used for activity-based protein profiling, monitoring of enzyme activity, and the chemical synthesis of microarrays and small molecule libraries. An attractive approach for installing azides into biomolecules is based on metabolic labeling whereby an azide-containing biosynthetic precursor is incorporated into biomolecules using the cells'biosynthetic machinery. This approach has been employed for tagging proteins, glycans, and lipids of living systems with a variety of reactive probes. These probes can facilitate the mapping of saccharide-selective glycoproteins and identify glycosylation sites. Alkyne probes have also been used for cell surface imaging of azide-modified biomolecules and a particularly attractive approach involves the generation of a fluorescent probe from a non-fluorescent precursor by a [3+2] cycloaddition. Despite many attractive features, a major disadvantage of the copper-catalyzed cycloaddition is the cellular toxicity of the metal catalyst, precluding applications wherein cells must remain viable. Hence, there is great need for the development of CuI free [3+2] cycloadditions. In this respect, alkynes can be activated by ring strain and, for example, constraining an alkyne within an eight membered ring creates 18 kcal/mol of strain, much of which is released in the transition state upon [3+2] cyclcoaddition with an azide. As a consequence, cyclooctynes react with azides at room temperature without the need of a catalyst. The strain-promoted cycloaddition has been used to label biomolecules without observable cyto-toxicitiy. The scope of the approach has, however, been limited due to the slow rate of reaction. Appending electron-withdrawing groups to the octyne ring can increase the rate of strain-promoted cycloadditions. However, this type of modification may make the alkyne prone to nucleophilic attack. Staudinger ligation with a phosphine reagent offers the most attractive reagent for cell surface labeling of azides.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR005351-22
Application #
8361812
Study Section
Special Emphasis Panel (ZRG1-IMST-A (40))
Project Start
2011-02-01
Project End
2012-01-31
Budget Start
2011-02-01
Budget End
2012-01-31
Support Year
22
Fiscal Year
2011
Total Cost
$442,858
Indirect Cost
Name
University of Georgia
Department
Type
Organized Research Units
DUNS #
004315578
City
Athens
State
GA
Country
United States
Zip Code
30602
Hannides, Angelos K; Aller, Robert C (2016) Priming effect of benthic gastropod mucus on sedimentary organic matter remineralization. Limnol Oceanogr 61:1640-1650
Revoredo, Leslie; Wang, Shengjun; Bennett, Eric Paul et al. (2016) Mucin-type O-glycosylation is controlled by short- and long-range glycopeptide substrate recognition that varies among members of the polypeptide GalNAc transferase family. Glycobiology 26:360-76
Zhao, Wujun; Zhu, Taotao; Cheng, Rui et al. (2016) Label-Free and Continuous-Flow Ferrohydrodynamic Separation of HeLa Cells and Blood Cells in Biocompatible Ferrofluids. Adv Funct Mater 26:3990-3998
Liu, Lin; Zha, Jingying; DiGiandomenico, Antonio et al. (2015) Synthetic Enterobacterial Common Antigen (ECA) for the Development of a Universal Immunotherapy for Drug-Resistant Enterobacteriaceae. Angew Chem Int Ed Engl 54:10953-7
Wu, Liang; Viola, Cristina M; Brzozowski, Andrzej M et al. (2015) Structural characterization of human heparanase reveals insights into substrate recognition. Nat Struct Mol Biol 22:1016-22
Qiu, Hong; Xiao, Wenyuan; Yue, Jingwen et al. (2015) Heparan sulfate modulates Slit3-induced endothelial cell migration. Methods Mol Biol 1229:549-55
Li, Zixuan; Moniz, Heather; Wang, Shuo et al. (2015) High structural resolution hydroxyl radical protein footprinting reveals an extended Robo1-heparin binding interface. J Biol Chem 290:10729-40
Czuchry, Diana; Desormeaux, Paul; Stuart, Melissa et al. (2015) Identification and Biochemical Characterization of the Novel ?2,3-Sialyltransferase WbwA from Pathogenic Escherichia coli Serotype O104. J Bacteriol 197:3760-8
Zhang, Fuming; Moniz, Heather A; Walcott, Benjamin et al. (2014) Probing the impact of GFP tagging on Robo1-heparin interaction. Glycoconj J 31:299-307
Zarnowski, Robert; Westler, William M; Lacmbouh, Ghislain Ade et al. (2014) Novel entries in a fungal biofilm matrix encyclopedia. MBio 5:e01333-14

Showing the most recent 10 out of 245 publications