This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.The project involves scanning mice with flank tumors and make perfusion measurements using the 7T MRI system and the ultrasound system. The study is primarily designed to understand the working of the perfusion measurements in ultrasound using the contrast agent provided by VisualSonics and comparing those measurements with MRI. The project will involve the use of contrast agents both in MRI and ultrasound. Animals (N=10) with tumors on the flank will be scanned first using the MRI systems and then the animal will be moved to the Ultrasound system.MRI experiments will primarily involve using a T1 measuring sequence followed by a bolus injection of Magnevist in the tail vein using the MR microinjector. Dynamic contrast enhanced images of the tumor will be collected using a 3D encoding sequence (depending on contrast dynamics). The T1 measuring sequence can be a simple spin-echo sequence. or FSE or a FLASH type sequence. T1 measurements are primarily made to perform quantitative calculations of the various perfusion metrics in the tumors.Perfusion measurements in ultrasound will be made using the custom-built VisualSonics program for blood flow measurements. Microbubbles will be used as the contrast agent. Post-analysis will include the quantification of the perfusing metrics from the images collected using both the imaging modalities. Comparison of the perfusion metrics will be made. Archival system will need to be able to archive derived data from both modalities.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR005959-19
Application #
7726165
Study Section
Special Emphasis Panel (ZRG1-SBIB-P (40))
Project Start
2008-09-01
Project End
2009-06-30
Budget Start
2008-09-01
Budget End
2009-06-30
Support Year
19
Fiscal Year
2008
Total Cost
$19,418
Indirect Cost
Name
Duke University
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Tang, Xinyan; Jing, Liufang; Richardson, William J et al. (2016) Identifying molecular phenotype of nucleus pulposus cells in human intervertebral disc with aging and degeneration. J Orthop Res 34:1316-26
Hodgkinson, Conrad P; Bareja, Akshay; Gomez, José A et al. (2016) Emerging Concepts in Paracrine Mechanisms in Regenerative Cardiovascular Medicine and Biology. Circ Res 118:95-107
Schmeckpeper, Jeffrey; Verma, Amanda; Yin, Lucy et al. (2015) Inhibition of Wnt6 by Sfrp2 regulates adult cardiac progenitor cell differentiation by differential modulation of Wnt pathways. J Mol Cell Cardiol 85:215-25
Roos, Justus E; McAdams, Holman P; Kaushik, S Sivaram et al. (2015) Hyperpolarized Gas MR Imaging: Technique and Applications. Magn Reson Imaging Clin N Am 23:217-29
He, Mu; Robertson, Scott H; Kaushik, S Sivaram et al. (2015) Dose and pulse sequence considerations for hyperpolarized (129)Xe ventilation MRI. Magn Reson Imaging 33:877-85
Huang, Lingling; Walter, Vonn; Hayes, D Neil et al. (2014) Hedgehog-GLI signaling inhibition suppresses tumor growth in squamous lung cancer. Clin Cancer Res 20:1566-75
Huang, Jing; Guo, Jian; Beigi, Farideh et al. (2014) HASF is a stem cell paracrine factor that activates PKC epsilon mediated cytoprotection. J Mol Cell Cardiol 66:157-64
Yuan, Ying; Gilmore, John H; Geng, Xiujuan et al. (2014) FMEM: functional mixed effects modeling for the analysis of longitudinal white matter Tract data. Neuroimage 84:753-64
He, Mu; Kaushik, S Sivaram; Robertson, Scott H et al. (2014) Extending semiautomatic ventilation defect analysis for hyperpolarized (129)Xe ventilation MRI. Acad Radiol 21:1530-41
van Rhoon, Gerard C; Samaras, Theodoros; Yarmolenko, Pavel S et al. (2013) CEM43°C thermal dose thresholds: a potential guide for magnetic resonance radiofrequency exposure levels? Eur Radiol 23:2215-27

Showing the most recent 10 out of 239 publications