This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.It has been suggested that the magnetic compass sense of migratory birds and some other magnetoreceptive animals may be mediated by the blue-light-receptor protein cryptochrome. Recent experiments on plant seedlings have shown that the activity of cryptochrome in Arabidopsis thaliana is enhanced by the presence of a weak external magnetic field, confirming the ability of cryptochrome to harbor magnetic field responses. Additionally, cryptochrome has been found in retinal cells of birds known to be active during orientation behavior. Cryptochromes signaling is regulated by the photoreduction of an internally bound chromophore, flavin adenine dinucleiotide (FAD). The spin chemistry of this photoreduction process, which involves electron transfer from a chain of three tryptophans, is modulated by the presence of a magnetic field via the radical pair mechanism. Computational studies of the magnetic field dependence of cryptochromes signaling activity may give insights as to how or whether this radical pair mechanism could be involved in the avian magnetic compass (URL: www.ks.uiuc.edu/Research/cryptochrome/).

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR005969-18
Application #
7601253
Study Section
Special Emphasis Panel (ZRG1-BCMB-E (40))
Project Start
2007-08-15
Project End
2008-07-31
Budget Start
2007-08-15
Budget End
2008-07-31
Support Year
18
Fiscal Year
2007
Total Cost
$20,635
Indirect Cost
Name
University of Illinois Urbana-Champaign
Department
Type
Organized Research Units
DUNS #
041544081
City
Champaign
State
IL
Country
United States
Zip Code
61820
Shim, Jiwook; Banerjee, Shouvik; Qiu, Hu et al. (2017) Detection of methylation on dsDNA using nanopores in a MoS2 membrane. Nanoscale 9:14836-14845
Wolfe, Aaron J; Si, Wei; Zhang, Zhengqi et al. (2017) Quantification of Membrane Protein-Detergent Complex Interactions. J Phys Chem B 121:10228-10241
Decker, Karl; Page, Martin; Aksimentiev, Aleksei (2017) Nanoscale Ion Pump Derived from a Biological Water Channel. J Phys Chem B 121:7899-7906
Radak, Brian K; Chipot, Christophe; Suh, Donghyuk et al. (2017) Constant-pH Molecular Dynamics Simulations for Large Biomolecular Systems. J Chem Theory Comput 13:5933-5944
Sun, Chang; Taguchi, Alexander T; Vermaas, Josh V et al. (2016) Q-Band Electron-Nuclear Double Resonance Reveals Out-of-Plane Hydrogen Bonds Stabilize an Anionic Ubisemiquinone in Cytochrome bo3 from Escherichia coli. Biochemistry 55:5714-5725
Belkin, Maxim; Aksimentiev, Aleksei (2016) Molecular Dynamics Simulation of DNA Capture and Transport in Heated Nanopores. ACS Appl Mater Interfaces 8:12599-608
Poudel, Kumud R; Dong, Yongming; Yu, Hang et al. (2016) A time course of orchestrated endophilin action in sensing, bending, and stabilizing curved membranes. Mol Biol Cell 27:2119-32
Vermaas, Josh V; Taguchi, Alexander T; Dikanov, Sergei A et al. (2015) Redox potential tuning through differential quinone binding in the photosynthetic reaction center of Rhodobacter sphaeroides. Biochemistry 54:2104-16
Belkin, Maxim; Chao, Shu-Han; Jonsson, Magnus P et al. (2015) Plasmonic Nanopores for Trapping, Controlling Displacement, and Sequencing of DNA. ACS Nano 9:10598-611
Shen, Rong; Han, Wei; Fiorin, Giacomo et al. (2015) Structural Refinement of Proteins by Restrained Molecular Dynamics Simulations with Non-interacting Molecular Fragments. PLoS Comput Biol 11:e1004368

Showing the most recent 10 out of 371 publications