The proposed study is based on a clinical observation that the mandible normally has at base-line mechanical environment, moderate remodeling rate without implants, and that the increased remodeling was triggered by the insertion and subsequent loading of an implant. The basic hypothesis is that there are changes in the mechanical environment surrounding the implant and it is these changes that initiate bone remodeling. To verify the hypothesis first, the changes of the environment need to be identified. The mechanical parameters exhibiting significant changes will be considered as possible mechanical stimuli for initiating bone remodeling. Then the parameters will be correlated to the clinical and biological observations to identify the dominant parameters. In this study, we have developed two 3-D finite element models (FEMs) of a human mandible to: 1) determine the mechanical environment in the human mandible adjacent to the implant: and 2) identify the changes in the environment due to the implant and due to the implant superimposed by an orthodontics force. The FEMs have been created. Preliminary study showed that the increase of node points around the implant and the teeth would provide more reliable results. However, the space limitation and the speed of our Sun Workstations restricted our effort to increase the node number. I would like to apply for the Biomedical Grant (NIH) so that I can run our models using ABAQUS in the CRAY C90 supercomputer.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR006009-07
Application #
5225403
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
7
Fiscal Year
1996
Total Cost
Indirect Cost
Simakov, Nikolay A; Kurnikova, Maria G (2018) Membrane Position Dependency of the pKa and Conductivity of the Protein Ion Channel. J Membr Biol 251:393-404
Yonkunas, Michael; Buddhadev, Maiti; Flores Canales, Jose C et al. (2017) Configurational Preference of the Glutamate Receptor Ligand Binding Domain Dimers. Biophys J 112:2291-2300
Hwang, Wonmuk; Lang, Matthew J; Karplus, Martin (2017) Kinesin motility is driven by subdomain dynamics. Elife 6:
Earley, Lauriel F; Powers, John M; Adachi, Kei et al. (2017) Adeno-associated Virus (AAV) Assembly-Activating Protein Is Not an Essential Requirement for Capsid Assembly of AAV Serotypes 4, 5, and 11. J Virol 91:
Zhang, Yimeng; Li, Xiong; Samonds, Jason M et al. (2016) Relating functional connectivity in V1 neural circuits and 3D natural scenes using Boltzmann machines. Vision Res 120:121-31
Lee, Wei-Chung Allen; Bonin, Vincent; Reed, Michael et al. (2016) Anatomy and function of an excitatory network in the visual cortex. Nature 532:370-4
Murty, Vishnu P; Calabro, Finnegan; Luna, Beatriz (2016) The role of experience in adolescent cognitive development: Integration of executive, memory, and mesolimbic systems. Neurosci Biobehav Rev 70:46-58
Subramanian, Sandeep; Chaparala, Srilakshmi; Avali, Viji et al. (2016) A pilot study on the prevalence of DNA palindromes in breast cancer genomes. BMC Med Genomics 9:73
Ramakrishnan, N; Tourdot, Richard W; Radhakrishnan, Ravi (2016) Thermodynamic free energy methods to investigate shape transitions in bilayer membranes. Int J Adv Eng Sci Appl Math 8:88-100
Jurkowitz, Marianne S; Patel, Aalapi; Wu, Lai-Chu et al. (2015) The YhhN protein of Legionella pneumophila is a Lysoplasmalogenase. Biochim Biophys Acta 1848:742-51

Showing the most recent 10 out of 292 publications