This computational work addresses three orthopaedic research problems: simulating bone adaptation around an implant; calculating electric fields induced in bone by exogenous magnetic fields; and quantifying fluid flow in a mechanically loaded bone. Simulating bone adaptation is accomplished by applying physiological loads and constraints to a finite element model of the canine distal femur and using a bone remodeling finite element program to model the changes in porosity and architecture of the bone surrounding an implant experimentally inserted in the femur. The remodeling finite element code has successfully been used on the C90, and additional runs are needed to further explore the effects of different loading conditions on the resulting bone adaptation. The electric field problem is part of a project that is aimed at relating bone adaptation to electric field intensity to find a relationship between the applied fields and the biological response in a turkey model. Co des utilizing the finite element method and the finite difference method will be explored to find an optimal way to quantify the induced electric fields in a turkey wing that is exposed to a time-varying magnetic field. For the problem of fluid flow in bone, the interaction between the bone fluid and the bone matrix will be investigated using a finite element model also based upon a turkey model. First a finite element model of a bone mechanically loaded to mimic experimental loading conditions will be run to calculate displacements and strains on the bone-organ level. These displacements and strains will then be used as boundary conditions for a bone-tissue model that includes the small bone channels through which bone fluid flows. A finite element code that induces fluid-structure interaction will be investigated.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
3P41RR006009-08S1
Application #
2765113
Study Section
Project Start
Project End
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
8
Fiscal Year
1998
Total Cost
Indirect Cost
Name
Mellon Pitts Corporation (Mpc Corp)
Department
Type
DUNS #
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Simakov, Nikolay A; Kurnikova, Maria G (2018) Membrane Position Dependency of the pKa and Conductivity of the Protein Ion Channel. J Membr Biol 251:393-404
Yonkunas, Michael; Buddhadev, Maiti; Flores Canales, Jose C et al. (2017) Configurational Preference of the Glutamate Receptor Ligand Binding Domain Dimers. Biophys J 112:2291-2300
Hwang, Wonmuk; Lang, Matthew J; Karplus, Martin (2017) Kinesin motility is driven by subdomain dynamics. Elife 6:
Earley, Lauriel F; Powers, John M; Adachi, Kei et al. (2017) Adeno-associated Virus (AAV) Assembly-Activating Protein Is Not an Essential Requirement for Capsid Assembly of AAV Serotypes 4, 5, and 11. J Virol 91:
Subramanian, Sandeep; Chaparala, Srilakshmi; Avali, Viji et al. (2016) A pilot study on the prevalence of DNA palindromes in breast cancer genomes. BMC Med Genomics 9:73
Ramakrishnan, N; Tourdot, Richard W; Radhakrishnan, Ravi (2016) Thermodynamic free energy methods to investigate shape transitions in bilayer membranes. Int J Adv Eng Sci Appl Math 8:88-100
Zhang, Yimeng; Li, Xiong; Samonds, Jason M et al. (2016) Relating functional connectivity in V1 neural circuits and 3D natural scenes using Boltzmann machines. Vision Res 120:121-31
Lee, Wei-Chung Allen; Bonin, Vincent; Reed, Michael et al. (2016) Anatomy and function of an excitatory network in the visual cortex. Nature 532:370-4
Murty, Vishnu P; Calabro, Finnegan; Luna, Beatriz (2016) The role of experience in adolescent cognitive development: Integration of executive, memory, and mesolimbic systems. Neurosci Biobehav Rev 70:46-58
Jurkowitz, Marianne S; Patel, Aalapi; Wu, Lai-Chu et al. (2015) The YhhN protein of Legionella pneumophila is a Lysoplasmalogenase. Biochim Biophys Acta 1848:742-51

Showing the most recent 10 out of 292 publications