This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Bringing new drugs to the market remains one of the most strikingly inefficient processes in the world of high technology. Two-thirds of the $500-800MM required to produce a marketable drug is spent on unforeseen failures in early development. Computer methodologies designed to predict the behavior and properties of drug candidates have shown promise in bringing these costs down the goal is to discover failures in simulation rather than in prototyping. The Car group and researchers at Targacept Inc. and Wake Forest University are creating a software package that will significantly advance the current state of the art in computer aided drug design. The underlying innovation is the adaptation of a simulation methodology with unparalleled accuracy to the realm of drug discovery. The Car-Parrinello method allows one to dynamically simulate chemical systems using the most accurate formalism currently available quantum mechanics. This methodology requires no parameterization or subjective input, thus circumventing many of the obstacles investigators currently face. The software system in development contains a suite of applications familiar to computational chemists and molecular modelers. A commercialized Car-Parrinello software package is expected to have a noteworthy impact on the pharmaceutical industry by providing better predictions about the molecular properties of drug candidates. This software will likely find wide applicability in other simulation fields. We are currently seeking high-performance computing resources to accelerate our validation of this new software tool.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR006009-16A1
Application #
7358470
Study Section
Special Emphasis Panel (ZRG1-BCMB-Q (40))
Project Start
2006-09-30
Project End
2007-07-31
Budget Start
2006-09-30
Budget End
2007-07-31
Support Year
16
Fiscal Year
2006
Total Cost
$1,012
Indirect Cost
Name
Carnegie-Mellon University
Department
Biostatistics & Other Math Sci
Type
Schools of Arts and Sciences
DUNS #
052184116
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Simakov, Nikolay A; Kurnikova, Maria G (2018) Membrane Position Dependency of the pKa and Conductivity of the Protein Ion Channel. J Membr Biol 251:393-404
Yonkunas, Michael; Buddhadev, Maiti; Flores Canales, Jose C et al. (2017) Configurational Preference of the Glutamate Receptor Ligand Binding Domain Dimers. Biophys J 112:2291-2300
Hwang, Wonmuk; Lang, Matthew J; Karplus, Martin (2017) Kinesin motility is driven by subdomain dynamics. Elife 6:
Earley, Lauriel F; Powers, John M; Adachi, Kei et al. (2017) Adeno-associated Virus (AAV) Assembly-Activating Protein Is Not an Essential Requirement for Capsid Assembly of AAV Serotypes 4, 5, and 11. J Virol 91:
Murty, Vishnu P; Calabro, Finnegan; Luna, Beatriz (2016) The role of experience in adolescent cognitive development: Integration of executive, memory, and mesolimbic systems. Neurosci Biobehav Rev 70:46-58
Subramanian, Sandeep; Chaparala, Srilakshmi; Avali, Viji et al. (2016) A pilot study on the prevalence of DNA palindromes in breast cancer genomes. BMC Med Genomics 9:73
Ramakrishnan, N; Tourdot, Richard W; Radhakrishnan, Ravi (2016) Thermodynamic free energy methods to investigate shape transitions in bilayer membranes. Int J Adv Eng Sci Appl Math 8:88-100
Zhang, Yimeng; Li, Xiong; Samonds, Jason M et al. (2016) Relating functional connectivity in V1 neural circuits and 3D natural scenes using Boltzmann machines. Vision Res 120:121-31
Lee, Wei-Chung Allen; Bonin, Vincent; Reed, Michael et al. (2016) Anatomy and function of an excitatory network in the visual cortex. Nature 532:370-4
Jurkowitz, Marianne S; Patel, Aalapi; Wu, Lai-Chu et al. (2015) The YhhN protein of Legionella pneumophila is a Lysoplasmalogenase. Biochim Biophys Acta 1848:742-51

Showing the most recent 10 out of 292 publications