This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.This proposal for supercomputer resource is to support two NSF-funded proposals awarded to the PI (BES-0603035 and CTS-0625936). Objective of the proposal is to develop computational fluid dynamic models and simulation to study the hydrodynamics of deformable particles. The focus will be on the hemodynamics of multiple blood cells in microvessels of 10--300$mu$m diameter, typical of microcirculation and microfluidic devices. The emphasis is on the ability to consider the dynamics of a large population of deformable blood cells, $sim$ O(500) in number, while resolving the deformation of and the flow inside each individual cell. To that end, we are using the IBM p690 at NCSA to develop fully three-dimensional code using immsersed boundary methods for deformable cells, and combined Fourier--Finite difference scheme for the flow solver. We also couple molecular interaction between the adjacent cells and between a cell and a blood vessel wall to the hydrodynamics via a simple chemical kinetic approach. Using the past allocation, we have developed the 3D code, and addressed some problems related to the hydrodynamics of single and binary deformable cells in microvessels. We continue to pursue research on multiple cells, and hence request for continued support from NCSA.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR006009-17
Application #
7601493
Study Section
Special Emphasis Panel (ZRG1-BCMB-Q (40))
Project Start
2007-08-01
Project End
2008-07-31
Budget Start
2007-08-01
Budget End
2008-07-31
Support Year
17
Fiscal Year
2007
Total Cost
$314
Indirect Cost
Name
Carnegie-Mellon University
Department
Biostatistics & Other Math Sci
Type
Schools of Arts and Sciences
DUNS #
052184116
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Simakov, Nikolay A; Kurnikova, Maria G (2018) Membrane Position Dependency of the pKa and Conductivity of the Protein Ion Channel. J Membr Biol 251:393-404
Yonkunas, Michael; Buddhadev, Maiti; Flores Canales, Jose C et al. (2017) Configurational Preference of the Glutamate Receptor Ligand Binding Domain Dimers. Biophys J 112:2291-2300
Hwang, Wonmuk; Lang, Matthew J; Karplus, Martin (2017) Kinesin motility is driven by subdomain dynamics. Elife 6:
Earley, Lauriel F; Powers, John M; Adachi, Kei et al. (2017) Adeno-associated Virus (AAV) Assembly-Activating Protein Is Not an Essential Requirement for Capsid Assembly of AAV Serotypes 4, 5, and 11. J Virol 91:
Subramanian, Sandeep; Chaparala, Srilakshmi; Avali, Viji et al. (2016) A pilot study on the prevalence of DNA palindromes in breast cancer genomes. BMC Med Genomics 9:73
Ramakrishnan, N; Tourdot, Richard W; Radhakrishnan, Ravi (2016) Thermodynamic free energy methods to investigate shape transitions in bilayer membranes. Int J Adv Eng Sci Appl Math 8:88-100
Zhang, Yimeng; Li, Xiong; Samonds, Jason M et al. (2016) Relating functional connectivity in V1 neural circuits and 3D natural scenes using Boltzmann machines. Vision Res 120:121-31
Lee, Wei-Chung Allen; Bonin, Vincent; Reed, Michael et al. (2016) Anatomy and function of an excitatory network in the visual cortex. Nature 532:370-4
Murty, Vishnu P; Calabro, Finnegan; Luna, Beatriz (2016) The role of experience in adolescent cognitive development: Integration of executive, memory, and mesolimbic systems. Neurosci Biobehav Rev 70:46-58
Shafee, Rebecca; Buckner, Randy L; Fischl, Bruce (2015) Gray matter myelination of 1555 human brains using partial volume corrected MRI images. Neuroimage 105:473-85

Showing the most recent 10 out of 292 publications