This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.Cystic Fibrosis Transmembrane conductance Regulator (CFTR) is a protein kinase A (PKA)-activated, ATP-gated chloride channel. Defective function of this channel in the apical membrane of epithelial cells is responsible for the debilitating symptoms in patients with cystic fibrosis. Although PKA-dependent phosphorylation of the regulatory (R) domain of CFTR is critical for CFTR function, the molecular mechanism of how phosphorylation of the R domain activates CFTR remains unclear. How many serine residues need to be phosphorylated to activate CFTR? Which residues are essential? Are those phosphorylation sites functionally degenerate or distinct? Biophysical studies of CFTR modulation by pharmacological reagents have led to the conclusion that membrane bilayer properties play a critical role in CFTR function. Pilot studies show that cholesterol, a key lipid component in cell membranes, has a major impact on CFTR function and its response to pharmacological reagents. How does cholesterol affect CFTR? Does it bind to the CFTR protein? Is the effect of cholesterol on CFTR gating secondary to an alteration of membrane fluidity? Is the choleserol-rich microdomain of the cell membrane involved? A multi-disciplinary team with biochemist, biophysicist, bioengineer and molecular biologist has been assembled to tackle these important questions. A variety of techniques will be used including site-directed mutagenesis, cell-attached, excised inside-out and whole-cell configurations of the patch-clamp technique, rapid photorelease of caged cAMP and membrane fluidity measurements with novel molecular rotors. The proposal is aimed to 1) study the molecular basis for phosphorylation-dependent regulation of CFTR function, and 2) investigate the biophysical and biochemical mechanisms for CFTR modulation by cholesterol. A clear picture of how CFTR is regulated by phosphorylation machinery and lipid environment will emerge from our studies. The information obtained will not only facilitate a fundamental understanding of how CFTR functions, but also aid in the development of novel therapeutics for patients with cystic fibrosis.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR006009-18
Application #
7723127
Study Section
Special Emphasis Panel (ZRG1-BCMB-Q (40))
Project Start
2008-08-01
Project End
2009-07-31
Budget Start
2008-08-01
Budget End
2009-07-31
Support Year
18
Fiscal Year
2008
Total Cost
$473
Indirect Cost
Name
Carnegie-Mellon University
Department
Biostatistics & Other Math Sci
Type
Schools of Arts and Sciences
DUNS #
052184116
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Simakov, Nikolay A; Kurnikova, Maria G (2018) Membrane Position Dependency of the pKa and Conductivity of the Protein Ion Channel. J Membr Biol 251:393-404
Yonkunas, Michael; Buddhadev, Maiti; Flores Canales, Jose C et al. (2017) Configurational Preference of the Glutamate Receptor Ligand Binding Domain Dimers. Biophys J 112:2291-2300
Hwang, Wonmuk; Lang, Matthew J; Karplus, Martin (2017) Kinesin motility is driven by subdomain dynamics. Elife 6:
Earley, Lauriel F; Powers, John M; Adachi, Kei et al. (2017) Adeno-associated Virus (AAV) Assembly-Activating Protein Is Not an Essential Requirement for Capsid Assembly of AAV Serotypes 4, 5, and 11. J Virol 91:
Subramanian, Sandeep; Chaparala, Srilakshmi; Avali, Viji et al. (2016) A pilot study on the prevalence of DNA palindromes in breast cancer genomes. BMC Med Genomics 9:73
Ramakrishnan, N; Tourdot, Richard W; Radhakrishnan, Ravi (2016) Thermodynamic free energy methods to investigate shape transitions in bilayer membranes. Int J Adv Eng Sci Appl Math 8:88-100
Zhang, Yimeng; Li, Xiong; Samonds, Jason M et al. (2016) Relating functional connectivity in V1 neural circuits and 3D natural scenes using Boltzmann machines. Vision Res 120:121-31
Lee, Wei-Chung Allen; Bonin, Vincent; Reed, Michael et al. (2016) Anatomy and function of an excitatory network in the visual cortex. Nature 532:370-4
Murty, Vishnu P; Calabro, Finnegan; Luna, Beatriz (2016) The role of experience in adolescent cognitive development: Integration of executive, memory, and mesolimbic systems. Neurosci Biobehav Rev 70:46-58
Jurkowitz, Marianne S; Patel, Aalapi; Wu, Lai-Chu et al. (2015) The YhhN protein of Legionella pneumophila is a Lysoplasmalogenase. Biochim Biophys Acta 1848:742-51

Showing the most recent 10 out of 292 publications