This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.The structure, stability and dynamics of peptides and proteins depend on both the folded and unfolded states. These states are linked both thermodynamically and kinetically. The unfolded state of proteins used to be characterized as a random coil; however, recent studies have shown the presence of significant interactions including residual local secondary structure (such as short alpha-helices) in addition to native and non-native tertiary contacts. Despite the importance of the unfolded state, relatively few studies have characterized this state under native-like conditions, since the equilibrium constant strongly favors the folded state under these conditions. Therefore, here we propose to use isotope-edited infrared spectroscopy coupled with density functional theory calculations to investigate the spectral dependence on the length of short ?-helices found in unfolded states of proteins. This method provides residue-specificity through the use of non-perturbing isotopic labels to probe the peptide backbone conformation and hydration with sufficient temporal resolution to study the molecular dynamics of interest. Specifically, helical peptides containing 4, 8 or 11 helical amino acids stabilized by a La3+ binding loop to overcome the typical instability of short helical peptides will be investigated. Density functional theory as implemented in Gaussian 03 will be used to calculate the infrared spectra of these peptides following geometric optimization of structures resulting from molecular dynamic simulations at multiple temperatures utilizing CHARMM. These calculations will be critical in the examination of the dependence of the IR spectra on helix length and the analysis of the experimental IR spectra corresponding to the unfolding of these peptides. This information will then be used as the basis for the study of unfolded state structure in larger peptides and proteins. The computations will start with the 8 helical residue peptide, since its NMR structure is known. The other peptide structures will be initially generated by the removal or addition of residues to the C-terminus of this peptide. The calculations will focus on the effect of isotopic labels on the vibrational spectra of the model peptides in addition to peptide backbone conformation and hydration. Similar to previous DFT calculations of helical systems, the computational cost of these calculations will be minimized by fixing the position of the peptide backbone. This strategy will permit the vibrational spectra of the peptides to be calculated with and without explicit water molecules aiding in the analysis of the experimentally IR results. The DFT explicit water calculations will involve the placement of water molecules in key positions to model H-bonding to the peptide backbone. These computational studies will also investigate the potential of using un-natural amino acids such as nitrile-derivatized alanine and phenylalanine residues as probes of local secondary structure in peptides and proteins.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR006009-18
Application #
7723328
Study Section
Special Emphasis Panel (ZRG1-BCMB-Q (40))
Project Start
2008-08-01
Project End
2009-07-31
Budget Start
2008-08-01
Budget End
2009-07-31
Support Year
18
Fiscal Year
2008
Total Cost
$473
Indirect Cost
Name
Carnegie-Mellon University
Department
Biostatistics & Other Math Sci
Type
Schools of Arts and Sciences
DUNS #
052184116
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Simakov, Nikolay A; Kurnikova, Maria G (2018) Membrane Position Dependency of the pKa and Conductivity of the Protein Ion Channel. J Membr Biol 251:393-404
Yonkunas, Michael; Buddhadev, Maiti; Flores Canales, Jose C et al. (2017) Configurational Preference of the Glutamate Receptor Ligand Binding Domain Dimers. Biophys J 112:2291-2300
Hwang, Wonmuk; Lang, Matthew J; Karplus, Martin (2017) Kinesin motility is driven by subdomain dynamics. Elife 6:
Earley, Lauriel F; Powers, John M; Adachi, Kei et al. (2017) Adeno-associated Virus (AAV) Assembly-Activating Protein Is Not an Essential Requirement for Capsid Assembly of AAV Serotypes 4, 5, and 11. J Virol 91:
Subramanian, Sandeep; Chaparala, Srilakshmi; Avali, Viji et al. (2016) A pilot study on the prevalence of DNA palindromes in breast cancer genomes. BMC Med Genomics 9:73
Ramakrishnan, N; Tourdot, Richard W; Radhakrishnan, Ravi (2016) Thermodynamic free energy methods to investigate shape transitions in bilayer membranes. Int J Adv Eng Sci Appl Math 8:88-100
Zhang, Yimeng; Li, Xiong; Samonds, Jason M et al. (2016) Relating functional connectivity in V1 neural circuits and 3D natural scenes using Boltzmann machines. Vision Res 120:121-31
Lee, Wei-Chung Allen; Bonin, Vincent; Reed, Michael et al. (2016) Anatomy and function of an excitatory network in the visual cortex. Nature 532:370-4
Murty, Vishnu P; Calabro, Finnegan; Luna, Beatriz (2016) The role of experience in adolescent cognitive development: Integration of executive, memory, and mesolimbic systems. Neurosci Biobehav Rev 70:46-58
Ramakrishnan, N; Radhakrishnan, Ravi (2015) Phenomenology based multiscale models as tools to understand cell membrane and organelle morphologies. Adv Planar Lipid Bilayers Liposomes 22:129-175

Showing the most recent 10 out of 292 publications