This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Accurate RNA recognition by other biomolecules such as proteins, cofactors and other RNA molecules are critical to many cellular functions. Employing a variety of computational chemistry tools such as molecular dynamics simulations, quantum calculations and hybrid quantum mechanical/molecular mechanics methods, our research examines three primary areas, messenger RNA - transfer RNA (mRNA-tRNA) recognition, a key step in the translation of proteins, protein-RNA interactions in human immunodeficiency virus (HIV) and pKa calculations in catalytic RNA molecules. In the first area, the role of naturally occurring, posttranscriptionally modified bases in affecting tRNA-mRNA recognition is examined. In human tRNALys,3, we have found that a modified base at position 37 are required for maintenance of a canonical stair-stepped conformation in the anticodon bases (34-36). Ab initio studies employing natural bond orbital analysis with the M05-2X functional are underway to determine the underlying stabilizing forces and the role of modified bases at the 37th position in retaining a stair-stepped conformation in all tRNAs. Optimization of hydrogen positions at the M05-2X/6-31+G(d,p) theory level needs to be carried out for tetranucleotides and trinucleotides (dimers are ~1400 basis functions), which on our local machines can take greater than 45 days/calculation. Faster computing resources are required to make progress on this project. In the second area of research, we are examining the role of water and electrostatics in RNA-peptide recognition. In late phase Rev-RRE recognition mediates nucleocytoplasmic export of partially and unspliced HIV mRNA. From in vitro selection studies performed by Frankel and coworkers, a synthetic peptide known as RSG-1.2 has been found to bind RRE with greater affinity and specificity than the native Rev peptide. We have simulated both Rev and RSG-1.2 peptides complexed with the RRE RNA in explicit water using AMBER and have found a correlation between water structure in the peptide-RNA complexes and binding affinity. More simulations to corroborate earlier findings are required. Systems are roughly 35,000 atoms and data could be collected more efficiently employing parallel AMBER code. Lastly, in collaboration with Darrin York, we are calculating pKas in catalytic RNA molecules known as ribozymes. The thermodynamic integration methods require equilibrated starting systems. Current systems are carried out in explicit solvent (TIP4Pew), include 150 mM NaCl buffer solution beyond the neutralized RNA and are about 75,000 atoms. These systems require a number of simulated annealing rounds to equilibrate the ion atmosphere and then the RNA must be subsequently equilibrated in the presence of the buffer before TI calculations can be performed. This allocation is requested to take advantage of parallel computing facilities while also exploring optimum Teragrid platforms for future allocation requests.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR006009-19
Application #
7956307
Study Section
Special Emphasis Panel (ZRG1-BCMB-Q (40))
Project Start
2009-08-01
Project End
2010-07-31
Budget Start
2009-08-01
Budget End
2010-07-31
Support Year
19
Fiscal Year
2009
Total Cost
$771
Indirect Cost
Name
Carnegie-Mellon University
Department
Biostatistics & Other Math Sci
Type
Schools of Arts and Sciences
DUNS #
052184116
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Simakov, Nikolay A; Kurnikova, Maria G (2018) Membrane Position Dependency of the pKa and Conductivity of the Protein Ion Channel. J Membr Biol 251:393-404
Yonkunas, Michael; Buddhadev, Maiti; Flores Canales, Jose C et al. (2017) Configurational Preference of the Glutamate Receptor Ligand Binding Domain Dimers. Biophys J 112:2291-2300
Hwang, Wonmuk; Lang, Matthew J; Karplus, Martin (2017) Kinesin motility is driven by subdomain dynamics. Elife 6:
Earley, Lauriel F; Powers, John M; Adachi, Kei et al. (2017) Adeno-associated Virus (AAV) Assembly-Activating Protein Is Not an Essential Requirement for Capsid Assembly of AAV Serotypes 4, 5, and 11. J Virol 91:
Subramanian, Sandeep; Chaparala, Srilakshmi; Avali, Viji et al. (2016) A pilot study on the prevalence of DNA palindromes in breast cancer genomes. BMC Med Genomics 9:73
Ramakrishnan, N; Tourdot, Richard W; Radhakrishnan, Ravi (2016) Thermodynamic free energy methods to investigate shape transitions in bilayer membranes. Int J Adv Eng Sci Appl Math 8:88-100
Zhang, Yimeng; Li, Xiong; Samonds, Jason M et al. (2016) Relating functional connectivity in V1 neural circuits and 3D natural scenes using Boltzmann machines. Vision Res 120:121-31
Lee, Wei-Chung Allen; Bonin, Vincent; Reed, Michael et al. (2016) Anatomy and function of an excitatory network in the visual cortex. Nature 532:370-4
Murty, Vishnu P; Calabro, Finnegan; Luna, Beatriz (2016) The role of experience in adolescent cognitive development: Integration of executive, memory, and mesolimbic systems. Neurosci Biobehav Rev 70:46-58
Jurkowitz, Marianne S; Patel, Aalapi; Wu, Lai-Chu et al. (2015) The YhhN protein of Legionella pneumophila is a Lysoplasmalogenase. Biochim Biophys Acta 1848:742-51

Showing the most recent 10 out of 292 publications