This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.PrgX, a key player in controlling conjugation induced by the peptide pheromone cCF10 in Enterococcus faecalis, is the cytoplasmic receptor for the cCF10 peptide pheromone and has been shown to bind to two sequences in the intergenic region of pCF10 between prgX and prgQ (the prgQ operon encodes the conjugative transfer functions of pCF10). We have solved the crystal structures of PrgX and PrgX/cCF10 complex. We proposed that PrgX functions as a tetramer in vivo from our PrgX crystal structures. The structure of the pheromone-PrgX complex reveals that pheromone binds in the cleft of the central dimerization domain, causes the C-terminal regulatory domain rotates about 120 and thus disrupts the PrgX tetramer. The results have been published in PNAS in 2005. cCF10 is a heptapeptide. To study the effects of different sequence on the cCF10 biological function, different mutations of cCF10 have been constructed and co-crystallized with PrgX. These crystals, like the PrgX/cCF10 crystals, all have a very long unit cell dimension (othorombic, a=71 , b=84 , c=280 ) and large mosaicity (>1.5 ). Therefore, a strong and well-focused thin beam is essential for having good data for these crystals.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR007707-16A1
Application #
7725991
Study Section
Special Emphasis Panel (ZRG1-BCMB-P (40))
Project Start
2008-09-01
Project End
2009-07-31
Budget Start
2008-09-01
Budget End
2009-07-31
Support Year
16
Fiscal Year
2008
Total Cost
$15,816
Indirect Cost
Name
University of Chicago
Department
Miscellaneous
Type
Schools of Medicine
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Weingarten, Adam S; Dannenhoffer, Adam J; Kazantsev, Roman V et al. (2018) Chromophore Dipole Directs Morphology and Photocatalytic Hydrogen Generation. J Am Chem Soc 140:4965-4968
Yang, Cheolhee; Choi, Minseo; Kim, Jong Goo et al. (2018) Protein Structural Dynamics of Wild-Type and Mutant Homodimeric Hemoglobin Studied by Time-Resolved X-Ray Solution Scattering. Int J Mol Sci 19:
Kazantsev, Roman V; Dannenhoffer, Adam J; Weingarten, Adam S et al. (2017) Crystal-Phase Transitions and Photocatalysis in Supramolecular Scaffolds. J Am Chem Soc 139:6120-6127
Fournier, Bertrand; Sokolow, Jesse; Coppens, Philip (2016) Analysis of multicrystal pump-probe data sets. II. Scaling of ratio data sets. Acta Crystallogr A Found Adv 72:250-60
Cho, Hyun Sun; Schotte, Friedrich; Dashdorj, Naranbaatar et al. (2016) Picosecond Photobiology: Watching a Signaling Protein Function in Real Time via Time-Resolved Small- and Wide-Angle X-ray Scattering. J Am Chem Soc 138:8815-23
Pande, Kanupriya; Hutchison, Christopher D M; Groenhof, Gerrit et al. (2016) Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science 352:725-9
Sampath, Sujatha; Yarger, Jeffery L (2015) Structural hysteresis in dragline spider silks induced by supercontraction: An x-ray fiber micro-diffraction study. RSC Adv 5:1462-1473
Liang, Wenguang G; Ren, Min; Zhao, Fan et al. (2015) Structures of human CCL18, CCL3, and CCL4 reveal molecular determinants for quaternary structures and sensitivity to insulin-degrading enzyme. J Mol Biol 427:1345-1358
Coppens, Philip; Fournier, Bertrand (2015) New methods in time-resolved Laue pump-probe crystallography at synchrotron sources. J Synchrotron Radiat 22:280-7
Weingarten, Adam S; Kazantsev, Roman V; Palmer, Liam C et al. (2015) Supramolecular Packing Controls H? Photocatalysis in Chromophore Amphiphile Hydrogels. J Am Chem Soc 137:15241-6

Showing the most recent 10 out of 120 publications