This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Cellulose is the most abundant biopolymer on earth and is a renewable resource. This makes it an attractive research target for renewable energy studies, especially for bioethanol production. Amorphous cellulose is a much more tractable feedstock for biofuel production. We have identified a method that solubilizes cellulose with ionic liquid to produce amorphous material. On replacement of ionic liquid with water or ethanol the treated cellulose fibrils manifest varying degrees of crystallinity. We are following the crystallinity of treated material with fiber diffraction to determine the parameters of cellulose lattice disruption and amorphous cellulose production. Synchrotron X-ray fluxes are needed to produce a signal from the amorphous samples to determine the level of lattice preservation and the effects on single cellulose crystallite dissolution vs. gross fibrillar degradation. Specifically, we are asking the question of how the single cellulose crystallite is affected by solubilization, as compared with the changes seen in the overall fibril. Exposures are made of the starting fibril, the fibril after various time steps of ionic liquid treatment, and the material after the ionic liquid has been displaced with water or ethanol. The fiber is kept in a nitrogen gas stream to prevent atmospheric water from displacing the ionic liquid during diffraction experiments. As the ionic liquid is non-toxic, these experiments represent no health hazard.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR007707-18
Application #
8171991
Study Section
Special Emphasis Panel (ZRG1-BCMB-P (40))
Project Start
2010-08-01
Project End
2011-07-31
Budget Start
2010-08-01
Budget End
2011-07-31
Support Year
18
Fiscal Year
2010
Total Cost
$3,649
Indirect Cost
Name
University of Chicago
Department
Miscellaneous
Type
Schools of Medicine
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Weingarten, Adam S; Dannenhoffer, Adam J; Kazantsev, Roman V et al. (2018) Chromophore Dipole Directs Morphology and Photocatalytic Hydrogen Generation. J Am Chem Soc 140:4965-4968
Yang, Cheolhee; Choi, Minseo; Kim, Jong Goo et al. (2018) Protein Structural Dynamics of Wild-Type and Mutant Homodimeric Hemoglobin Studied by Time-Resolved X-Ray Solution Scattering. Int J Mol Sci 19:
Kazantsev, Roman V; Dannenhoffer, Adam J; Weingarten, Adam S et al. (2017) Crystal-Phase Transitions and Photocatalysis in Supramolecular Scaffolds. J Am Chem Soc 139:6120-6127
Fournier, Bertrand; Sokolow, Jesse; Coppens, Philip (2016) Analysis of multicrystal pump-probe data sets. II. Scaling of ratio data sets. Acta Crystallogr A Found Adv 72:250-60
Cho, Hyun Sun; Schotte, Friedrich; Dashdorj, Naranbaatar et al. (2016) Picosecond Photobiology: Watching a Signaling Protein Function in Real Time via Time-Resolved Small- and Wide-Angle X-ray Scattering. J Am Chem Soc 138:8815-23
Pande, Kanupriya; Hutchison, Christopher D M; Groenhof, Gerrit et al. (2016) Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science 352:725-9
Mariette, Céline; Guérin, Laurent; Rabiller, Philippe et al. (2015) The creation of modulated monoclinic aperiodic composites in n-alkane/urea compounds. Z Kristallogr Cryst Mater 230:5-11
Yang, Xiaojing; Stojkovi?, Emina A; Ozarowski, Wesley B et al. (2015) Light Signaling Mechanism of Two Tandem Bacteriophytochromes. Structure 23:1179-89
Liu, Yue; Sheng, Ju; Fokine, Andrei et al. (2015) Structure and inhibition of EV-D68, a virus that causes respiratory illness in children. Science 347:71-4
Coppens, Philip; Fournier, Bertrand (2015) On the scaling of multicrystal data sets collected at high-intensity X-ray and electron sources. Struct Dyn 2:064101

Showing the most recent 10 out of 120 publications