This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Intense ultrashort laser pulses provide us with a way to access non-equilibrium states in solids by excitation of coherent phonons. Because the phonons in the material determine the mechanical and thermal properties it is of great interest to develop tools to study the dynamics of the nonequilibrium phonon population induced by the laser. In addition laser excitation can be used to access other nonequilibrium phases of matter through for example novel phase transitions involving lattice instabilities at high wavevector. Because of the long wavelength of visible radiation only a small volume of the Brillouin zone is accessed in optical experiments. There is currently no experimental technique that can provide time-resolved information of the complete phonon branches of the solid. Time-resolved x-ray diffuse scattering (TRXDS) has the potential to be the ultimate tool to study these nonequilibrium processes throughout the Brillouin-zone of the crystal. We propose to use time-resolved diffuse X-ray scattering to study the lattice instability of Si and GaP induced by intense laser irradiation. The proposed experiment serves as a test of the feasibility of time-resolved x-ray diffuse scattering at APS and could potentially benefit a large part of the community with the advent of novel sources as the LCLS.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR007707-19
Application #
8363678
Study Section
Special Emphasis Panel (ZRG1-BCMB-P (40))
Project Start
2011-08-01
Project End
2012-07-31
Budget Start
2011-08-01
Budget End
2012-07-31
Support Year
19
Fiscal Year
2011
Total Cost
$60,824
Indirect Cost
Name
University of Chicago
Department
Miscellaneous
Type
Schools of Medicine
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Weingarten, Adam S; Dannenhoffer, Adam J; Kazantsev, Roman V et al. (2018) Chromophore Dipole Directs Morphology and Photocatalytic Hydrogen Generation. J Am Chem Soc 140:4965-4968
Yang, Cheolhee; Choi, Minseo; Kim, Jong Goo et al. (2018) Protein Structural Dynamics of Wild-Type and Mutant Homodimeric Hemoglobin Studied by Time-Resolved X-Ray Solution Scattering. Int J Mol Sci 19:
Kazantsev, Roman V; Dannenhoffer, Adam J; Weingarten, Adam S et al. (2017) Crystal-Phase Transitions and Photocatalysis in Supramolecular Scaffolds. J Am Chem Soc 139:6120-6127
Fournier, Bertrand; Sokolow, Jesse; Coppens, Philip (2016) Analysis of multicrystal pump-probe data sets. II. Scaling of ratio data sets. Acta Crystallogr A Found Adv 72:250-60
Cho, Hyun Sun; Schotte, Friedrich; Dashdorj, Naranbaatar et al. (2016) Picosecond Photobiology: Watching a Signaling Protein Function in Real Time via Time-Resolved Small- and Wide-Angle X-ray Scattering. J Am Chem Soc 138:8815-23
Pande, Kanupriya; Hutchison, Christopher D M; Groenhof, Gerrit et al. (2016) Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science 352:725-9
Coppens, Philip; Fournier, Bertrand (2015) New methods in time-resolved Laue pump-probe crystallography at synchrotron sources. J Synchrotron Radiat 22:280-7
Weingarten, Adam S; Kazantsev, Roman V; Palmer, Liam C et al. (2015) Supramolecular Packing Controls H? Photocatalysis in Chromophore Amphiphile Hydrogels. J Am Chem Soc 137:15241-6
Pfoh, Roland; Pai, Emil F; Saridakis, Vivian (2015) Nicotinamide mononucleotide adenylyltransferase displays alternate binding modes for nicotinamide nucleotides. Acta Crystallogr D Biol Crystallogr 71:2032-9
Mariette, Céline; Guérin, Laurent; Rabiller, Philippe et al. (2015) The creation of modulated monoclinic aperiodic composites in n-alkane/urea compounds. Z Kristallogr Cryst Mater 230:5-11

Showing the most recent 10 out of 120 publications