This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The primary objectives of this study are to collect pilot data, in support of an upcoming NIH (R01) grant application, and to characterize the relationships between physical exercise, brain structure and function (as measured by MRI), cognition, and aging. Four groups of healthy normal adults will be contrasted: younger (aged 20-25 years) and older (60-65 years) regular exercisers and younger and older non-exercisers. It is hypothesized that (1) there will be a main effect of exercise status on brain structure and function, (2) there will be a main effect of age on both brain structure and function, and cognitive function, and (3) there will be an interaction between exercise status and age on cognitive function such that the effects of exercise status on cognitive function will be greater in the older age group. Limited MRI specific research to date indicates that aerobic exercise may preserve brain volume (gray and white matter in frontal regions) and associated cognitive capacity in elderly populations (Colcombe et al., 2003, 2006). One other study (Marks et al., 2007) suggests that greater aerobic fitness is associated with increased white matter integrity in key select brain regions. The proposed research study intends to corroborate and extend these findings by using multiple brain imaging techniques to determine the influence of exercise on: brain morphometry/volume, connectivity, activation, and perfusion. Aerobic fitness will be determined from a maximal oxygen consumption treadmill protocol;associated cognitive differences will be assessed using the following tasks: Reversal Learning, Stroop, and Weschler Memory test. To address a void in the current literature, and to explore potential effects of age, this investigation intends to also include a young population.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR008079-17
Application #
7954962
Study Section
Special Emphasis Panel (ZRG1-SBIB-S (40))
Project Start
2009-06-01
Project End
2010-05-31
Budget Start
2009-06-01
Budget End
2010-05-31
Support Year
17
Fiscal Year
2009
Total Cost
$12,835
Indirect Cost
Name
University of Minnesota Twin Cities
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
555917996
City
Minneapolis
State
MN
Country
United States
Zip Code
55455
Herzberg, Max P; Hodel, Amanda S; Cowell, Raquel A et al. (2018) Risk taking, decision-making, and brain volume in youth adopted internationally from institutional care. Neuropsychologia 119:262-270
U?urbil, Kamil (2018) Imaging at ultrahigh magnetic fields: History, challenges, and solutions. Neuroimage 168:7-32
Foell, Jens; Palumbo, Isabella M; Yancey, James R et al. (2018) Biobehavioral threat sensitivity and amygdala volume: A twin neuroimaging study. Neuroimage 186:14-21
Magnitsky, Sergey; Pickup, Stephan; Garwood, Michael et al. (2018) Imaging of a high concentration of iron labeled cells with positive contrast in a rat knee. Magn Reson Med :
Lee, Byeong-Yeul; Zhu, Xiao-Hong; Woo, Myung Kyun et al. (2018) Interleaved 31 P MRS imaging of human frontal and occipital lobes using dual RF coils in combination with single-channel transmitter-receiver and dynamic B0 shimming. NMR Biomed 31:
Wilson, Sylia; Malone, Stephen M; Hunt, Ruskin H et al. (2018) Problematic alcohol use and hippocampal volume in a female sample: disentangling cause from consequence using a co-twin control study design. Psychol Med 48:1673-1684
Bolan, Patrick J; Kim, Eunhee; Herman, Benjamin A et al. (2017) MR spectroscopy of breast cancer for assessing early treatment response: Results from the ACRIN 6657 MRS trial. J Magn Reson Imaging 46:290-302
Nelson, Brent G; Bassett, Danielle S; Camchong, Jazmin et al. (2017) Comparison of large-scale human brain functional and anatomical networks in schizophrenia. Neuroimage Clin 15:439-448
Lyzinski, Vince; Fishkind, Donniell E; Fiori, Marcelo et al. (2016) Graph Matching: Relax at Your Own Risk. IEEE Trans Pattern Anal Mach Intell 38:60-73
Ugurbil, Kamil (2016) What is feasible with imaging human brain function and connectivity using functional magnetic resonance imaging. Philos Trans R Soc Lond B Biol Sci 371:

Showing the most recent 10 out of 493 publications