This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Cardiac fibrillation is disorganized electrical behavior of the heart, and its consequence is the loss of coordinated muscle contraction. Electrical defibrillation by timely application of a strong electric shock to the heart has long been used as an effective therapy for this otherwise lethal disturbance of cardiac rhythm. In recent years defibrillation therapy has dramatically expanded due to its improved accessibility and functionality. Despite the critical role that the technique plays in saving human life, the fundamental mechanisms by which electrical shocks halt life-threatening disturbances in cardiac rhythm are not completely understood. Mechanical contraction follows the electrical activation of the heart. However, it has long been known that there is a cross-talk between the electrical and mechanical processes which could play a role in anti-arrhythmia therapy. Owing to the complexities in cardiac structure and behavior, mechanical contributions have never before been considered in the investigation of cardiac defibrillation mechanisms. The objective of this research is to determine the contribution of mechanoelectrical feedback in the process of cardiac defibrillation, and thus, to increase our knowledge of the mechanisms by which the exposure of the heart to strong electric shocks terminates fibrillation. This application seeks to establish collaboration between the Computational Cardiac Electrophysiology Group at Tulane University and the National Biomedical Computation Resource and thus, to take full advantage of the combination of state-of-the-art approaches in modeling cardiac defibrillation and mechanical contraction, respectively, developed by the two groups. Upon completion, the project is expected to bring a new level of understanding to how the complex electro-mechanical events in the heart can be used to benefit anti-arrhythmia therapy. As a collaborative project of the NBCR this research will promote extensions to the development of Continuity and its anatomic, electrical and mechanical models and algorithms that will permit greater integration with bidomain models of the heart and torso, opening in up to the large array of applications in cardiac pacing, shock and electrocardiography.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR008605-13
Application #
7358669
Study Section
Special Emphasis Panel (ZRG1-SSS-9 (40))
Project Start
2006-05-01
Project End
2007-04-30
Budget Start
2006-05-01
Budget End
2007-04-30
Support Year
13
Fiscal Year
2006
Total Cost
$9,830
Indirect Cost
Name
University of California San Diego
Department
Anatomy/Cell Biology
Type
Schools of Arts and Sciences
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Pantoja, Joe Luis; Morgan, Ashley E; Grossi, Eugene A et al. (2017) Undersized Mitral Annuloplasty Increases Strain in the Proximal Lateral Left Ventricular Wall. Ann Thorac Surg 103:820-827
Morgan, Ashley E; Wozniak, Curtis J; Gulati, Sarthak et al. (2017) Association of Uneven MitraClip Application and Leaflet Stress in a Finite Element Model. JAMA Surg 152:111-114
Ge, Liang; Wu, Yife; Soleimani, Mehrdad et al. (2016) Moderate Ischemic Mitral Regurgitation After Posterolateral Myocardial Infarction in Sheep Alters Left Ventricular Shear but Not Normal Strain in the Infarct and Infarct Borderzone. Ann Thorac Surg 101:1691-9
Morgan, Ashley E; Pantoja, Joe Luis; Weinsaft, Jonathan et al. (2016) Finite Element Modeling of Mitral Valve Repair. J Biomech Eng 138:021009
Morgan, Ashley E; Pantoja, Joe L; Grossi, Eugene A et al. (2016) Neochord placement versus triangular resection in mitral valve repair: A finite element model. J Surg Res 206:98-105
Purvine, Emilie; Monson, Kyle; Jurrus, Elizabeth et al. (2016) Energy Minimization of Discrete Protein Titration State Models Using Graph Theory. J Phys Chem B 120:8354-60
Bucero, Marta Abril; Bajaj, Chandrajit; Mourrain, Bernard (2016) On the construction of general cubature formula by flat extensions. Linear Algebra Appl 502:104-125
Ebeida, Mohamed S; Rushdi, Ahmad A; Awad, Muhammad A et al. (2016) Disk Density Tuning of a Maximal Random Packing. Comput Graph Forum 35:259-269
Yang, Pei-Chi; Boras, Britton W; Jeng, Mao-Tsuen et al. (2016) A Computational Modeling and Simulation Approach to Investigate Mechanisms of Subcellular cAMP Compartmentation. PLoS Comput Biol 12:e1005005
Watson, Shana R; Liu, Piaomu; Peña, Edsel A et al. (2016) Comparison of Aortic Collagen Fiber Angle Distribution in Mouse Models of Atherosclerosis Using Second-Harmonic Generation (SHG) Microscopy. Microsc Microanal 22:55-62

Showing the most recent 10 out of 270 publications