This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. (A) OBJECTIVES Atrial fibrillation (AF) affects 2.2 million individuals in the United States, and is a major cause of stroke, heart failure and mortality (8). Maintaining sinus rhythm reduces symptoms and may prolong survival, yet remains difficult (1). Recent advances in ablation now make it possible to cure many patients with paroxysmal AF, whose episodes are self-limiting, by isolating triggers in the pulmonary veins (12, 14). Unfortunately, ablation is complex, and less successful in the large population with persistent AF, whose episodes require drugs or cardioversion to terminate (10). In this group, AF recurs post-ablation in >50 %, requiring multiple ablations with attendant morbidity and mortality (5). Unfortunately, therapy is limited by a poor understanding of how, and under what conditions, AF occurs in humans. It is increasingly appreciated that structural heterogeneities or dynamic tissue properties may initiate fibrillation (33). Animal, in vitro and computational studies have shown that every-other-beat oscillations (alternans) in action potential duration (APD), may initiate ventricular fibrillation (33). Mechanistically, tissue heterogeneities such as scar, or dynamics such as steep restitution (i.e. """"""""rate-response"""""""") of APD, conduction velocity (CV) that slows for a broad range of rates (36), may cause APD alternans. By exaggerating repolarization dispersion, particularly if discordant (33), APD alternans may be a direct mechanism for AF. Although APD alternans has yet to be linked with AF in animals or man, we have exciting preliminary data in humans showing APD alternans leading directly to reentrant AF. As a collaborative project of the NBCR this research will promote extensions to the development of Continuity and its anatomic and electrical models and patient-specific modeling algorithms that will permit greater integration with models of impulse conduction in the atria. Our central hypothesis is that Atrial Fibrillation in humans initiates from Alternans of Action Potential Duration (APD), that reflects steep restitution of atrial APD and broad restitution of regional conduction velocity, and explains AF near the pulmonary veins (PV) in paroxysmal AF but not persistent AF. This study marries sophisticated data collection in patients at AF ablation with unique state-of-the-art patient-specific computational modeling to address 3 Specific Aims. 1. To determine whether alternans of atrial action potential duration (APD), resulting from steep APD restitution or broad conduction velocity (CV) restitution, precedes the onset of Atrial Fibrillation. We will record multi-site monophasic action potentials (MAP) and CV from 64-128 bi-atrial basket poles at electrophysiologic study, with and without pharmacologic modulation, in atrial reconstructions guided by computed tomography in paroxysmal and persistent AF patients. 2. To determine whether the first beats of AF follow conduction block and reentry. We will use patient-specific structure-function data, from basket maps referenced to digital atrial anatomy, isochronal analysis and phase mapping. We will also determine if these sites lie near PVs in patients with paroxysmal AF but not persistent AF. 3. To determine whether AF is caused by atrial discordant APD alternans, by developing patient-specific computational models derived from clinically observed electrophysiology. We will develop finite-volume models that incorporate observed CV and APD restitution, atrial shape and structural heterogeneities for each patient, to compare modeled to actual AF in each patient.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR008605-16
Application #
7955291
Study Section
Special Emphasis Panel (ZRG1-SBIB-C (40))
Project Start
2009-05-01
Project End
2010-04-30
Budget Start
2009-05-01
Budget End
2010-04-30
Support Year
16
Fiscal Year
2009
Total Cost
$3,181
Indirect Cost
Name
University of California San Diego
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Pantoja, Joe Luis; Morgan, Ashley E; Grossi, Eugene A et al. (2017) Undersized Mitral Annuloplasty Increases Strain in the Proximal Lateral Left Ventricular Wall. Ann Thorac Surg 103:820-827
Morgan, Ashley E; Wozniak, Curtis J; Gulati, Sarthak et al. (2017) Association of Uneven MitraClip Application and Leaflet Stress in a Finite Element Model. JAMA Surg 152:111-114
Ge, Liang; Wu, Yife; Soleimani, Mehrdad et al. (2016) Moderate Ischemic Mitral Regurgitation After Posterolateral Myocardial Infarction in Sheep Alters Left Ventricular Shear but Not Normal Strain in the Infarct and Infarct Borderzone. Ann Thorac Surg 101:1691-9
Morgan, Ashley E; Pantoja, Joe Luis; Weinsaft, Jonathan et al. (2016) Finite Element Modeling of Mitral Valve Repair. J Biomech Eng 138:021009
Morgan, Ashley E; Pantoja, Joe L; Grossi, Eugene A et al. (2016) Neochord placement versus triangular resection in mitral valve repair: A finite element model. J Surg Res 206:98-105
Purvine, Emilie; Monson, Kyle; Jurrus, Elizabeth et al. (2016) Energy Minimization of Discrete Protein Titration State Models Using Graph Theory. J Phys Chem B 120:8354-60
Bucero, Marta Abril; Bajaj, Chandrajit; Mourrain, Bernard (2016) On the construction of general cubature formula by flat extensions. Linear Algebra Appl 502:104-125
Ebeida, Mohamed S; Rushdi, Ahmad A; Awad, Muhammad A et al. (2016) Disk Density Tuning of a Maximal Random Packing. Comput Graph Forum 35:259-269
Yang, Pei-Chi; Boras, Britton W; Jeng, Mao-Tsuen et al. (2016) A Computational Modeling and Simulation Approach to Investigate Mechanisms of Subcellular cAMP Compartmentation. PLoS Comput Biol 12:e1005005
Watson, Shana R; Liu, Piaomu; Peña, Edsel A et al. (2016) Comparison of Aortic Collagen Fiber Angle Distribution in Mouse Models of Atherosclerosis Using Second-Harmonic Generation (SHG) Microscopy. Microsc Microanal 22:55-62

Showing the most recent 10 out of 270 publications