This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Our goal is to study the role of titin in modulating structural parameters of striated muscle, and particularly those that may lead to altered actomyosin interaction. We have focused on experiments that take advantage of differential expression of cardiac titin isoforms to provide a mechanism to vary titin-based passive tension. In the heart, small (N2B) and large (N2BA) titin isoforms are expressed in a species-specific and location-specific manner. N2B titin has a shorter extensible region than N2BA titin and, consequently, produces higher passive tension at a given SL, when compared to N2BA titin. In the bovine heart, the expression ratio of N2B titin to N2BA titin is approximately equal in the ventricle, whereas the atrium expresses predominantly N2BA titin, resulting in higher passive tension in the ventricle. We measured the sarcomere length (SL) dependence of activation in skinned cardiac muscles from the bovine left ventricle (BLV), and bovine left atrium (BLA). Passive tension was also varied in each muscle type by manipulating the pre-history of stretch prior to activation. We found that the SL-dependent increases in Ca2+ sensitivity and maximal Ca2+-activated tension were markedly more pronounced when titin-based passive tension was high. Small-angle X-ray diffraction experiments revealed that the SL dependence of reduction of interfilament lattice spacing is greater in BLV than in BLA and that the lattice spacing is coupled with titin-based passive tension. These results support the notion that titin-based passive tension promotes actomyosin interaction by reducing the lattice spacing.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR008630-11
Application #
7369128
Study Section
Special Emphasis Panel (ZRG1-BBCA (40))
Project Start
2006-04-01
Project End
2007-03-31
Budget Start
2006-04-01
Budget End
2007-03-31
Support Year
11
Fiscal Year
2006
Total Cost
$13,285
Indirect Cost
Name
Illinois Institute of Technology
Department
Other Basic Sciences
Type
Schools of Arts and Sciences
DUNS #
042084434
City
Chicago
State
IL
Country
United States
Zip Code
60616
Orgel, Joseph P R O; Sella, Ido; Madhurapantula, Rama S et al. (2017) Molecular and ultrastructural studies of a fibrillar collagen from octocoral (Cnidaria). J Exp Biol 220:3327-3335
Yazdi, Aliakbar Khalili; Vezina, Grant C; Shilton, Brian H (2017) An alternate mode of oligomerization for E. coli SecA. Sci Rep 7:11747
Sullivan, Brendan; Robison, Gregory; Pushkar, Yulia et al. (2017) Copper accumulation in rodent brain astrocytes: A species difference. J Trace Elem Med Biol 39:6-13
Morris, Martha Clare (2016) Nutrition and risk of dementia: overview and methodological issues. Ann N Y Acad Sci 1367:31-7
Robison, Gregory; Sullivan, Brendan; Cannon, Jason R et al. (2015) Identification of dopaminergic neurons of the substantia nigra pars compacta as a target of manganese accumulation. Metallomics 7:748-55
Gelfand, Paul; Smith, Randy J; Stavitski, Eli et al. (2015) Characterization of Protein Structural Changes in Living Cells Using Time-Lapsed FTIR Imaging. Anal Chem 87:6025-31
Liang, Wenguang G; Ren, Min; Zhao, Fan et al. (2015) Structures of human CCL18, CCL3, and CCL4 reveal molecular determinants for quaternary structures and sensitivity to insulin-degrading enzyme. J Mol Biol 427:1345-1358
Zhou, Hao; Li, Shangyang; Badger, John et al. (2015) Modulation of HIV protease flexibility by the T80N mutation. Proteins 83:1929-39
Nobrega, R Paul; Arora, Karunesh; Kathuria, Sagar V et al. (2014) Modulation of frustration in folding by sequence permutation. Proc Natl Acad Sci U S A 111:10562-7
Jiao, Lianying; Ouyang, Songying; Shaw, Neil et al. (2014) Mechanism of the Rpn13-induced activation of Uch37. Protein Cell 5:616-30

Showing the most recent 10 out of 100 publications