This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The major goal of this project is to understand the chemical and physical aspects of chaperoned refolding of proteins with synthetic polymers. Bio-compatible polymer polyethylene glycol (PEG) can perform a chaperone function at concentrations wherein PEG:protein ratio is large enough to sterically prevent proteins to self associate. We hypothesize that the attachment of a hydrophobic block to the PEG segment would lead to a better targeting of the hydrophobic domains of unfolded proteins and, thus decrease the quantity of polymer required for preventing protein aggregation and enabling efficient refolding to concentrations well tolerated by the human body. We performed a series of SAXS experiments to determine the level at which several di-block and tri-block copolymer surfactants are able to prevent aggregation of thermally unfolded proteins. Questions we addressed were: How does the relative block size in a surfactant and its concentration influence the unfolding/refolding process? Is there an optimal surfactant concentration that effectively prevents aggregation? SAXS investigations demonstrated that non-ionic amphiphilic tri-block copolymers of the form poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (poloxamers) are able to prevent the aggregation of unfolded proteins and enhance their refolding yield. Our data indicate that certain poloxamers are able to perform a chaperone function at stoichiometric concentrations significantly lower than that reported for PEG. These results might be significant for the development of therapies that reestablish tissue structure, function and viability after physical tra

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR008630-11
Application #
7369136
Study Section
Special Emphasis Panel (ZRG1-BBCA (40))
Project Start
2006-04-01
Project End
2007-03-31
Budget Start
2006-04-01
Budget End
2007-03-31
Support Year
11
Fiscal Year
2006
Total Cost
$4,432
Indirect Cost
Name
Illinois Institute of Technology
Department
Other Basic Sciences
Type
Schools of Arts and Sciences
DUNS #
042084434
City
Chicago
State
IL
Country
United States
Zip Code
60616
Orgel, Joseph P R O; Sella, Ido; Madhurapantula, Rama S et al. (2017) Molecular and ultrastructural studies of a fibrillar collagen from octocoral (Cnidaria). J Exp Biol 220:3327-3335
Yazdi, Aliakbar Khalili; Vezina, Grant C; Shilton, Brian H (2017) An alternate mode of oligomerization for E. coli SecA. Sci Rep 7:11747
Sullivan, Brendan; Robison, Gregory; Pushkar, Yulia et al. (2017) Copper accumulation in rodent brain astrocytes: A species difference. J Trace Elem Med Biol 39:6-13
Morris, Martha Clare (2016) Nutrition and risk of dementia: overview and methodological issues. Ann N Y Acad Sci 1367:31-7
Robison, Gregory; Sullivan, Brendan; Cannon, Jason R et al. (2015) Identification of dopaminergic neurons of the substantia nigra pars compacta as a target of manganese accumulation. Metallomics 7:748-55
Gelfand, Paul; Smith, Randy J; Stavitski, Eli et al. (2015) Characterization of Protein Structural Changes in Living Cells Using Time-Lapsed FTIR Imaging. Anal Chem 87:6025-31
Liang, Wenguang G; Ren, Min; Zhao, Fan et al. (2015) Structures of human CCL18, CCL3, and CCL4 reveal molecular determinants for quaternary structures and sensitivity to insulin-degrading enzyme. J Mol Biol 427:1345-1358
Zhou, Hao; Li, Shangyang; Badger, John et al. (2015) Modulation of HIV protease flexibility by the T80N mutation. Proteins 83:1929-39
Kathuria, Sagar V; Kayatekin, Can; Barrea, Raul et al. (2014) Microsecond barrier-limited chain collapse observed by time-resolved FRET and SAXS. J Mol Biol 426:1980-94
Skinner, John J; Yu, Wookyung; Gichana, Elizabeth K et al. (2014) Benchmarking all-atom simulations using hydrogen exchange. Proc Natl Acad Sci U S A 111:15975-80

Showing the most recent 10 out of 100 publications