This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.An early diagnosis of malignancies correlates directly with a better prognosis. Yet for many malignancies there are no readily available, non invasive, cost effective diagnostic tests. Too often the patient presents too late for effective treatment. My 2007 results, from research conducted at the BioCAT Facility, have shown for the first time the use of fibre diffraction patterns of skin or nails as a biometric diagnostic method for detecting neoplastic or neurological disorders including but not limited to breast, colon, and prostate cancers, melanoma and Alzheimer's disease. These alternative tissues appear to hold more promise than the earlier hair diffraction study as the many disorder problems, resulting from handling, mounting and cosmetic treatments that have plagued the hair diffraction diagnostic tests, have been eliminated. Results to date show that nail diffraction studies, using a newly developed and quite different experimental procedure, may provide an alternative diagnostic test for breast and colon cancers and Alzheimer's disease. The skin diffraction study has to date revealed 'signature changes' specific to the presence of either prostate cancer or melanoma, neither of which cancers caused any change in hair even with samples from patients with Grade 7 cancers. More tests are necessary to obtain statistically reliable specificities and sensitivities and to extend the study to other promising neoplastic diseases. With such suitable further development, a totally non-invasive yet reliable diagnostic test for these neoplastic and neurological diseases could be conducted on a regular basis as a mass screening test using suitable beam-lines at synchrotrons.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR008630-13
Application #
7722756
Study Section
Special Emphasis Panel (ZRG1-BCMB-E (40))
Project Start
2008-04-01
Project End
2008-12-31
Budget Start
2008-04-01
Budget End
2008-12-31
Support Year
13
Fiscal Year
2008
Total Cost
$18,984
Indirect Cost
Name
Illinois Institute of Technology
Department
Other Basic Sciences
Type
Schools of Arts and Sciences
DUNS #
042084434
City
Chicago
State
IL
Country
United States
Zip Code
60616
Orgel, Joseph P R O; Sella, Ido; Madhurapantula, Rama S et al. (2017) Molecular and ultrastructural studies of a fibrillar collagen from octocoral (Cnidaria). J Exp Biol 220:3327-3335
Yazdi, Aliakbar Khalili; Vezina, Grant C; Shilton, Brian H (2017) An alternate mode of oligomerization for E. coli SecA. Sci Rep 7:11747
Sullivan, Brendan; Robison, Gregory; Pushkar, Yulia et al. (2017) Copper accumulation in rodent brain astrocytes: A species difference. J Trace Elem Med Biol 39:6-13
Morris, Martha Clare (2016) Nutrition and risk of dementia: overview and methodological issues. Ann N Y Acad Sci 1367:31-7
Robison, Gregory; Sullivan, Brendan; Cannon, Jason R et al. (2015) Identification of dopaminergic neurons of the substantia nigra pars compacta as a target of manganese accumulation. Metallomics 7:748-55
Gelfand, Paul; Smith, Randy J; Stavitski, Eli et al. (2015) Characterization of Protein Structural Changes in Living Cells Using Time-Lapsed FTIR Imaging. Anal Chem 87:6025-31
Liang, Wenguang G; Ren, Min; Zhao, Fan et al. (2015) Structures of human CCL18, CCL3, and CCL4 reveal molecular determinants for quaternary structures and sensitivity to insulin-degrading enzyme. J Mol Biol 427:1345-1358
Zhou, Hao; Li, Shangyang; Badger, John et al. (2015) Modulation of HIV protease flexibility by the T80N mutation. Proteins 83:1929-39
Nobrega, R Paul; Arora, Karunesh; Kathuria, Sagar V et al. (2014) Modulation of frustration in folding by sequence permutation. Proc Natl Acad Sci U S A 111:10562-7
Jiao, Lianying; Ouyang, Songying; Shaw, Neil et al. (2014) Mechanism of the Rpn13-induced activation of Uch37. Protein Cell 5:616-30

Showing the most recent 10 out of 100 publications