This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that integrates signals from integrin and growth factor receptors. Upon cell adhesion FAK is recruited to focal adhesions and activated. FAK activation involves a sequential mechanism of autophosphorylation, Src recruitment and Src phosphorylation of the activation loop of FAK. We have recently solved the crystal structure of autoinhibited FAK, which reveals a compact conformation where the N-terminal FERM domain binds and inhibits the kinase domain. We are now studying the mechanism of FAK activation. We have evidence that activated FAK adopts an extended and most likely flexible conformation. Hence, we have failed to obtain crystals of active forms of FAK. We therefore believe that Small Angle X-ray Scattering (SAXS) is the ideal technique to study FAK activation. During this cycle we have collected SAXS data of autoinhibited and mutationally activated forms of FAK. These experiments were conducted very recently and data analysis is not complete at this point. However, initial analysis suggests that SAXS will be able to provide low-resolution molecular envelopes that allow docking of high-resolution crystal structures of the individual domains. We therefore expect that further analysis and further experiments will give valuable insight into conformational changes that FAK undergoes upon activation.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR008630-14
Application #
7954912
Study Section
Special Emphasis Panel (ZRG1-BCMB-E (40))
Project Start
2009-01-01
Project End
2009-12-31
Budget Start
2009-01-01
Budget End
2009-12-31
Support Year
14
Fiscal Year
2009
Total Cost
$6,487
Indirect Cost
Name
Illinois Institute of Technology
Department
Other Basic Sciences
Type
Schools of Arts and Sciences
DUNS #
042084434
City
Chicago
State
IL
Country
United States
Zip Code
60616
Orgel, Joseph P R O; Sella, Ido; Madhurapantula, Rama S et al. (2017) Molecular and ultrastructural studies of a fibrillar collagen from octocoral (Cnidaria). J Exp Biol 220:3327-3335
Yazdi, Aliakbar Khalili; Vezina, Grant C; Shilton, Brian H (2017) An alternate mode of oligomerization for E. coli SecA. Sci Rep 7:11747
Sullivan, Brendan; Robison, Gregory; Pushkar, Yulia et al. (2017) Copper accumulation in rodent brain astrocytes: A species difference. J Trace Elem Med Biol 39:6-13
Morris, Martha Clare (2016) Nutrition and risk of dementia: overview and methodological issues. Ann N Y Acad Sci 1367:31-7
Robison, Gregory; Sullivan, Brendan; Cannon, Jason R et al. (2015) Identification of dopaminergic neurons of the substantia nigra pars compacta as a target of manganese accumulation. Metallomics 7:748-55
Gelfand, Paul; Smith, Randy J; Stavitski, Eli et al. (2015) Characterization of Protein Structural Changes in Living Cells Using Time-Lapsed FTIR Imaging. Anal Chem 87:6025-31
Liang, Wenguang G; Ren, Min; Zhao, Fan et al. (2015) Structures of human CCL18, CCL3, and CCL4 reveal molecular determinants for quaternary structures and sensitivity to insulin-degrading enzyme. J Mol Biol 427:1345-1358
Zhou, Hao; Li, Shangyang; Badger, John et al. (2015) Modulation of HIV protease flexibility by the T80N mutation. Proteins 83:1929-39
Nobrega, R Paul; Arora, Karunesh; Kathuria, Sagar V et al. (2014) Modulation of frustration in folding by sequence permutation. Proc Natl Acad Sci U S A 111:10562-7
Jiao, Lianying; Ouyang, Songying; Shaw, Neil et al. (2014) Mechanism of the Rpn13-induced activation of Uch37. Protein Cell 5:616-30

Showing the most recent 10 out of 100 publications