This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Hsp90 is an essential chaperone in eukaryotes that is involved in the maturation of numerous kinases. Because numerous oncogenic kinases rely on Hsp90 for their function, Hsp90 has emerged as a promising target for anti-cancer therapeutics. The design of effective Hsp90 inhibitors would benefit from a molecular understanding of Hsp90 mechanism. Recently, two structures of Hsp90 have been determined both with the C-terminal domain forming a stable dimer. In one structure the N-terminal domain is also dimerized forming a closed state, and in the other structure the N-terminal domain is separated by a large distance (>60 Angstroms). Small-angle X-ray scattering (SAXS) experiments are consistent with a model where ATP-binding shifts Hsp90 from the open to the closed conformation. To determine if the open conformation is involved in kinase maturation, we have engineered Hsp90 with a coiled-coil to hold the N-domain in the closed conformation in the absence of ATP binding. SAXS experiments at APS would provide critical data to determine the conformational states of our engineered Hsp90 molecules both in the presence and absence of ATP. Combined with in vivo studies currently underway to analyze kinase maturation, the SAXS data will provide important insights into a fundamental process in biology and medicine.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR008630-15
Application #
8168638
Study Section
Special Emphasis Panel (ZRG1-BCMB-E (40))
Project Start
2010-01-01
Project End
2010-12-31
Budget Start
2010-01-01
Budget End
2010-12-31
Support Year
15
Fiscal Year
2010
Total Cost
$5,442
Indirect Cost
Name
Illinois Institute of Technology
Department
Other Basic Sciences
Type
Schools of Arts and Sciences
DUNS #
042084434
City
Chicago
State
IL
Country
United States
Zip Code
60616
Orgel, Joseph P R O; Sella, Ido; Madhurapantula, Rama S et al. (2017) Molecular and ultrastructural studies of a fibrillar collagen from octocoral (Cnidaria). J Exp Biol 220:3327-3335
Yazdi, Aliakbar Khalili; Vezina, Grant C; Shilton, Brian H (2017) An alternate mode of oligomerization for E. coli SecA. Sci Rep 7:11747
Sullivan, Brendan; Robison, Gregory; Pushkar, Yulia et al. (2017) Copper accumulation in rodent brain astrocytes: A species difference. J Trace Elem Med Biol 39:6-13
Morris, Martha Clare (2016) Nutrition and risk of dementia: overview and methodological issues. Ann N Y Acad Sci 1367:31-7
Robison, Gregory; Sullivan, Brendan; Cannon, Jason R et al. (2015) Identification of dopaminergic neurons of the substantia nigra pars compacta as a target of manganese accumulation. Metallomics 7:748-55
Gelfand, Paul; Smith, Randy J; Stavitski, Eli et al. (2015) Characterization of Protein Structural Changes in Living Cells Using Time-Lapsed FTIR Imaging. Anal Chem 87:6025-31
Liang, Wenguang G; Ren, Min; Zhao, Fan et al. (2015) Structures of human CCL18, CCL3, and CCL4 reveal molecular determinants for quaternary structures and sensitivity to insulin-degrading enzyme. J Mol Biol 427:1345-1358
Zhou, Hao; Li, Shangyang; Badger, John et al. (2015) Modulation of HIV protease flexibility by the T80N mutation. Proteins 83:1929-39
Kathuria, Sagar V; Kayatekin, Can; Barrea, Raul et al. (2014) Microsecond barrier-limited chain collapse observed by time-resolved FRET and SAXS. J Mol Biol 426:1980-94
Skinner, John J; Yu, Wookyung; Gichana, Elizabeth K et al. (2014) Benchmarking all-atom simulations using hydrogen exchange. Proc Natl Acad Sci U S A 111:15975-80

Showing the most recent 10 out of 100 publications