This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. The goal of this works is to develop brighter, higher resolution scintilators that could improve the performance, and reduce the cost, of detectors designed for structural biology applications. The development is funded by a variety of SBIR grants from NIH and DOE but the testing of them under real beam conditions at 18ID is part of core project I in the BioCAT P41 grant. Currently we are examining films made of CsI:Tl,Sm, structured ZnTe:Om, and a structured ZnSe:Te as possible candidates for high brightness, high spatial resolution scintillators with fast decay times. The most promising of these so far is ZnSe:Te with 180% of the brightness of commercial MinR-2000 screens commonly used for these applications. These have been tested on 18ID with EMCCD and intensified CCD cameras to assess their suitability for the construction of time-resolved scattering detectors. Results of these experiments have been submitted for publication in NIM A. We will soon take delivery of an intensified CMOS camera capable of 3600 fps that we will ultimately be developed into a detector system (70 x 70 mm active area, ~67 micron pixels) when we have found a suitable scintillator. When this arrives we will be using this camera for the scintillator testing program because of it superiority over the EMCCD device.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR008630-16
Application #
8361309
Study Section
Special Emphasis Panel (ZRG1-BCMB-E (40))
Project Start
2011-01-01
Project End
2011-12-31
Budget Start
2011-01-01
Budget End
2011-12-31
Support Year
16
Fiscal Year
2011
Total Cost
$17,741
Indirect Cost
Name
Illinois Institute of Technology
Department
Other Basic Sciences
Type
Schools of Arts and Sciences
DUNS #
042084434
City
Chicago
State
IL
Country
United States
Zip Code
60616
Orgel, Joseph P R O; Sella, Ido; Madhurapantula, Rama S et al. (2017) Molecular and ultrastructural studies of a fibrillar collagen from octocoral (Cnidaria). J Exp Biol 220:3327-3335
Yazdi, Aliakbar Khalili; Vezina, Grant C; Shilton, Brian H (2017) An alternate mode of oligomerization for E. coli SecA. Sci Rep 7:11747
Sullivan, Brendan; Robison, Gregory; Pushkar, Yulia et al. (2017) Copper accumulation in rodent brain astrocytes: A species difference. J Trace Elem Med Biol 39:6-13
Morris, Martha Clare (2016) Nutrition and risk of dementia: overview and methodological issues. Ann N Y Acad Sci 1367:31-7
Robison, Gregory; Sullivan, Brendan; Cannon, Jason R et al. (2015) Identification of dopaminergic neurons of the substantia nigra pars compacta as a target of manganese accumulation. Metallomics 7:748-55
Gelfand, Paul; Smith, Randy J; Stavitski, Eli et al. (2015) Characterization of Protein Structural Changes in Living Cells Using Time-Lapsed FTIR Imaging. Anal Chem 87:6025-31
Liang, Wenguang G; Ren, Min; Zhao, Fan et al. (2015) Structures of human CCL18, CCL3, and CCL4 reveal molecular determinants for quaternary structures and sensitivity to insulin-degrading enzyme. J Mol Biol 427:1345-1358
Zhou, Hao; Li, Shangyang; Badger, John et al. (2015) Modulation of HIV protease flexibility by the T80N mutation. Proteins 83:1929-39
Witayavanitkul, Namthip; Ait Mou, Younss; Kuster, Diederik W D et al. (2014) Myocardial infarction-induced N-terminal fragment of cardiac myosin-binding protein C (cMyBP-C) impairs myofilament function in human myocardium. J Biol Chem 289:8818-27
Poor, Catherine B; Wegner, Seraphine V; Li, Haoran et al. (2014) Molecular mechanism and structure of the Saccharomyces cerevisiae iron regulator Aft2. Proc Natl Acad Sci U S A 111:4043-8

Showing the most recent 10 out of 100 publications