This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Introduction: Adiabatic pulses are useful in achieving uniform excitation profiles in the presence of B1 inhomogeneity. BIR-4 pulses have been shown to achieve adiabatic excitation with user-selectable flip angles. However, these pulses are nonselective. The BIR-4 pulse design has been extended through the use of gradient modulation techniques to create slice-selective adiabatic excitation pulses. Unfortunately, these techniques require high RF amplitude, typically above the output of the amplifiers available on most commercial scanners. In this work, we developed an alternative approach that achieves adiabatic slice selection with significantly lower RF peak power requirements. Our Slice-selective Tunable-flip AdiaBatic Low peak-power Excitation (STABLE) pulse consists of an oscillating gradient in conjunction with a BIR-4- like RF envelope that is sampled by many short spatial subpulses in order to achieve spatial selectivity. Methods and Discussion: A sech/tanh amplitude/frequency modulation function was used so that the amplitude and phase variations were sufficiently slow to be accurately sampled by the chosen number of subpulses. A phase discontinuity was introduced between the first and second segments and between the third and fourth segments to produce a 90 flip angle. The resultant spectral adiabatic excitation pulse was 21 ms long and had a spectral bandwidth of approximately 80 Hz. The pulse was then subsampled with the number of sublobes chosen as a trade-off between adiabaticity and minimum slice thickness. The final STABLE pulse was comprised of 33, 0.64 ms subpulses scaled by the adiabatic envelope. The STABLE pulse was integrated into a GRE sequence to compare it to a standard sequence with a conventional excitation pulse. Adiabatic threshold is reached at around 45% below nominal peak B1. Above the adiabatic threshold, the excited cross section remains largely invariant.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR009784-15
Application #
7955364
Study Section
Special Emphasis Panel (ZRG1-SBIB-F (40))
Project Start
2009-06-01
Project End
2010-05-31
Budget Start
2009-06-01
Budget End
2010-05-31
Support Year
15
Fiscal Year
2009
Total Cost
$18,046
Indirect Cost
Name
Stanford University
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Maclaren, Julian; Aksoy, Murat; Ooi, Melvyn B et al. (2018) Prospective motion correction using coil-mounted cameras: Cross-calibration considerations. Magn Reson Med 79:1911-1921
Guo, Jia; Holdsworth, Samantha J; Fan, Audrey P et al. (2018) Comparing accuracy and reproducibility of sequential and Hadamard-encoded multidelay pseudocontinuous arterial spin labeling for measuring cerebral blood flow and arterial transit time in healthy subjects: A simulation and in vivo study. J Magn Reson Imaging 47:1119-1132
Tamir, Jonathan I; Uecker, Martin; Chen, Weitian et al. (2017) T2 shuffling: Sharp, multicontrast, volumetric fast spin-echo imaging. Magn Reson Med 77:180-195
Lai, Lillian M; Cheng, Joseph Y; Alley, Marcus T et al. (2017) Feasibility of ferumoxytol-enhanced neonatal and young infant cardiac MRI without general anesthesia. J Magn Reson Imaging 45:1407-1418
Taviani, Valentina; Alley, Marcus T; Banerjee, Suchandrima et al. (2017) High-resolution diffusion-weighted imaging of the breast with multiband 2D radiofrequency pulses and a generalized parallel imaging reconstruction. Magn Reson Med 77:209-220
Uecker, Martin; Lustig, Michael (2017) Estimating absolute-phase maps using ESPIRiT and virtual conjugate coils. Magn Reson Med 77:1201-1207
Kogan, Feliks; Hargreaves, Brian A; Gold, Garry E (2017) Volumetric multislice gagCEST imaging of articular cartilage: Optimization and comparison with T1rho. Magn Reson Med 77:1134-1141
Aksoy, Murat; Maclaren, Julian; Bammer, Roland (2017) Prospective motion correction for 3D pseudo-continuous arterial spin labeling using an external optical tracking system. Magn Reson Imaging 39:44-52
Bian, W; Tranvinh, E; Tourdias, T et al. (2016) In Vivo 7T MR Quantitative Susceptibility Mapping Reveals Opposite Susceptibility Contrast between Cortical and White Matter Lesions in Multiple Sclerosis. AJNR Am J Neuroradiol 37:1808-1815
Vos, Sjoerd B; Aksoy, Murat; Han, Zhaoying et al. (2016) Trade-off between angular and spatial resolutions in in vivo fiber tractography. Neuroimage 129:117-132

Showing the most recent 10 out of 446 publications