This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The overall aim of this project is to map the potential pathways of cognitive and motor activation. This has progressed in the last year to add several improvements in the DTI image reconstruction and processing software (?Tensorcalc?) that we wrote and maintain for the P41 RR09784. Diffusion tensor imaging (DTI) is a promising new technique for the assessment of white matter (WM) structural integrity and connectivity. We have written and refined 3 key core DTI map tracking algorithms that are being used to track white matter fibers for determining the potential white matter trafficking patterns. One of the more exciting methods to arise from the noninvasive mapping of white matter tracks is the potential of tracking the white matter fibers from one region of brain to another. This in essence, reveals the underlying ?wiring? of the activated brain. Our algorithm allows for real-time connectivity maps that can be generated from planting a seed in one white matter tract region. We have constructed software ?phantoms? to check the algorithms for accuracy and reproducibility. Our diffusion tensor imaging protocol is performed using a spin echo EPI technique and we have added a host of new spiral methods. The vector maps hold the orientation of the fibers as well as the magnitude of the orientation. From the fiber maps, one can compose several general approaches to finding connectivity from fiber to fiber from a variety of model algorithms that we have built.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR009784-16
Application #
8169824
Study Section
Special Emphasis Panel (ZRG1-SBIB-U (40))
Project Start
2010-07-01
Project End
2011-03-31
Budget Start
2010-07-01
Budget End
2011-03-31
Support Year
16
Fiscal Year
2010
Total Cost
$24,667
Indirect Cost
Name
Stanford University
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Maclaren, Julian; Aksoy, Murat; Ooi, Melvyn B et al. (2018) Prospective motion correction using coil-mounted cameras: Cross-calibration considerations. Magn Reson Med 79:1911-1921
Guo, Jia; Holdsworth, Samantha J; Fan, Audrey P et al. (2018) Comparing accuracy and reproducibility of sequential and Hadamard-encoded multidelay pseudocontinuous arterial spin labeling for measuring cerebral blood flow and arterial transit time in healthy subjects: A simulation and in vivo study. J Magn Reson Imaging 47:1119-1132
Tamir, Jonathan I; Uecker, Martin; Chen, Weitian et al. (2017) T2 shuffling: Sharp, multicontrast, volumetric fast spin-echo imaging. Magn Reson Med 77:180-195
Lai, Lillian M; Cheng, Joseph Y; Alley, Marcus T et al. (2017) Feasibility of ferumoxytol-enhanced neonatal and young infant cardiac MRI without general anesthesia. J Magn Reson Imaging 45:1407-1418
Taviani, Valentina; Alley, Marcus T; Banerjee, Suchandrima et al. (2017) High-resolution diffusion-weighted imaging of the breast with multiband 2D radiofrequency pulses and a generalized parallel imaging reconstruction. Magn Reson Med 77:209-220
Uecker, Martin; Lustig, Michael (2017) Estimating absolute-phase maps using ESPIRiT and virtual conjugate coils. Magn Reson Med 77:1201-1207
Kogan, Feliks; Hargreaves, Brian A; Gold, Garry E (2017) Volumetric multislice gagCEST imaging of articular cartilage: Optimization and comparison with T1rho. Magn Reson Med 77:1134-1141
Aksoy, Murat; Maclaren, Julian; Bammer, Roland (2017) Prospective motion correction for 3D pseudo-continuous arterial spin labeling using an external optical tracking system. Magn Reson Imaging 39:44-52
Bian, W; Tranvinh, E; Tourdias, T et al. (2016) In Vivo 7T MR Quantitative Susceptibility Mapping Reveals Opposite Susceptibility Contrast between Cortical and White Matter Lesions in Multiple Sclerosis. AJNR Am J Neuroradiol 37:1808-1815
Vos, Sjoerd B; Aksoy, Murat; Han, Zhaoying et al. (2016) Trade-off between angular and spatial resolutions in in vivo fiber tractography. Neuroimage 129:117-132

Showing the most recent 10 out of 446 publications