This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.Alzheimer's disease (AD) is definitively diagnosed neuropathologically by the presence of senile plaques and neurofibrillary tangles in the limbic and association cortices. The predominant component of the extracellular senile plaque is amyloid beta (A-beta), a 39- to 43-amino acid peptide that is proteolytically derived from amyloid precursor protein (APP). The amyloid precursor protein (APP) must fulll important roles based on its sequence conservation from y to human. However, the neuronal function of this ubiquitously expressed protein has not yet been elucidated. Although the pathogenetic mechanism(s) of AD remain to be determined, genetic, histopathologic, and biochemical evidence from humans, cell lines, and animal models implicates A-beta as a key factor in the neurodegenerative process. Therefore, one of the most prominent approaches in therapeutic development is to decrease A-beta production by inhibiting the secretases that release this peptide from APP.
The aim of this project is to extend characterization of APP, to elucidate its normal role(s) and to understand how inhibiting the secretases may affect its physiologic function(s). Candidate binding partners have been crosslinked to full-length, plasma membrane APP stably expressed by human embryonic kidney 293 cells (HEK293) expressing APP751 (HEK275) or rat embryonic day 18 primary neurons infected with a virus expressing APP. Notch2 was identied as a potential APP binding partner based on mass spectrometry analysis of APP complexes immunopuried from neurons. To conrm the interaction between Notch2 and APP, we carried out immunoprecipitation studies in HEK275 cells transiently expressing full-length Notch2 using Notch2 antibodies. The results indicated that APP and Notch2 interact in mammalian cells, and conrmed our initial ndings. Interestingly, Notch1 also coimmunoprecipitated with APP, suggesting that APP and Notch family members may engage in intermolecular crosstalk to modulate cell function. Cotransfection of APP/CFP and Notch2/YFP into COS cells revealed that these two proteins colocalize on the plasma membrane. Intracellularly, however, although some APP and Notch molecules colocalize, others reside in distinct locations. The discovery of proteins that interact with APP may aid in the identication of new functions for APP. A manuscript describing these results was recently published in the Journal of Neuroscience Research.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR010888-12
Application #
7722960
Study Section
Special Emphasis Panel (ZRG1-BCMB-H (40))
Project Start
2008-06-01
Project End
2009-05-31
Budget Start
2008-06-01
Budget End
2009-05-31
Support Year
12
Fiscal Year
2008
Total Cost
$650
Indirect Cost
Name
Boston University
Department
Biochemistry
Type
Schools of Medicine
DUNS #
604483045
City
Boston
State
MA
Country
United States
Zip Code
02118
Lu, Yanyan; Jiang, Yan; Prokaeva, Tatiana et al. (2017) Oxidative Post-Translational Modifications of an Amyloidogenic Immunoglobulin Light Chain Protein. Int J Mass Spectrom 416:71-79
Sethi, Manveen K; Zaia, Joseph (2017) Extracellular matrix proteomics in schizophrenia and Alzheimer's disease. Anal Bioanal Chem 409:379-394
Hu, Han; Khatri, Kshitij; Zaia, Joseph (2017) Algorithms and design strategies towards automated glycoproteomics analysis. Mass Spectrom Rev 36:475-498
Ji, Yuhuan; Bachschmid, Markus M; Costello, Catherine E et al. (2016) S- to N-Palmitoyl Transfer During Proteomic Sample Preparation. J Am Soc Mass Spectrom 27:677-85
Hu, Han; Khatri, Kshitij; Klein, Joshua et al. (2016) A review of methods for interpretation of glycopeptide tandem mass spectral data. Glycoconj J 33:285-96
Pu, Yi; Ridgeway, Mark E; Glaskin, Rebecca S et al. (2016) Separation and Identification of Isomeric Glycans by Selected Accumulation-Trapped Ion Mobility Spectrometry-Electron Activated Dissociation Tandem Mass Spectrometry. Anal Chem 88:3440-3
Wang, Yun Hwa Walter; Meyer, Rosana D; Bondzie, Philip A et al. (2016) IGPR-1 Is Required for Endothelial Cell-Cell Adhesion and Barrier Function. J Mol Biol 428:5019-5033
Srinivasan, Srimathi; Chitalia, Vipul; Meyer, Rosana D et al. (2015) Hypoxia-induced expression of phosducin-like 3 regulates expression of VEGFR-2 and promotes angiogenesis. Angiogenesis 18:449-62
Yu, Xiang; Sargaeva, Nadezda P; Thompson, Christopher J et al. (2015) In-Source Decay Characterization of Isoaspartate and ?-Peptides. Int J Mass Spectrom 390:101-109
Steinhorn, Benjamin S; Loscalzo, Joseph; Michel, Thomas (2015) Nitroglycerin and Nitric Oxide--A Rondo of Themes in Cardiovascular Therapeutics. N Engl J Med 373:277-80

Showing the most recent 10 out of 253 publications