This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.One of the key players in the mechanisms that regulate the assembly of triacylglycerol (TAG)-rich lipoproteins (such as very low density lipoproteins, VLDL) and theirsecretion from the liver into the plasma is apolipoprotein (apo) B. ApoB is a very large (4536 amino acids and molecular mass of about 550 kDa), hydrophobic glycoprotein that directs the assembly of VLDL. VLDL particles are remodeled in the plasma to give rise to low density lipoproteins (LDL), the major carriers of plasma cholesterol, and represent a major risk factor for the premature development of coronary heart disease. The goal of this project is to elucidate the molecular details of the folding of apoB into its mature, secretion-competent form. This might allow the development of means to modulate the secretion of VLDL and, thereby, reduce plasma cholesterol levels. ApoB has unusual structural properties, as it is virtually water insoluble, and as a result has unusual folding requirements. Folding of nascent proteins in the cell is a complex process that requires the assistance of molecular chaperones, which are highly conserved proteins found in all types of cells from every species. The primary role of molecular chaperones is to bind transiently to nascent polypeptides, prevent their aggregation, and maintain them in conformations competent for efficient folding. Lipids and proteins precipitated with antibodies against apoB were characterized in comparison to LDL and HDL (high density lipoprotein), and in further collaboration with F.K. Welty (Harvard Medical School), lipids from normal LDL are compared to those associated with the mutant apolipoprotein B67. A new LC-MS based methodology was developed for the characterization of these lipids and applied together with classic nanospray MS (published as U.Sommer et al. (2006) in the Journal of Lipid Research. further analysis of boh proteins and lipids in these complexes is ongoing.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR010888-12
Application #
7722967
Study Section
Special Emphasis Panel (ZRG1-BCMB-H (40))
Project Start
2008-06-01
Project End
2009-05-31
Budget Start
2008-06-01
Budget End
2009-05-31
Support Year
12
Fiscal Year
2008
Total Cost
$9,074
Indirect Cost
Name
Boston University
Department
Biochemistry
Type
Schools of Medicine
DUNS #
604483045
City
Boston
State
MA
Country
United States
Zip Code
02118
Lu, Yanyan; Jiang, Yan; Prokaeva, Tatiana et al. (2017) Oxidative Post-Translational Modifications of an Amyloidogenic Immunoglobulin Light Chain Protein. Int J Mass Spectrom 416:71-79
Sethi, Manveen K; Zaia, Joseph (2017) Extracellular matrix proteomics in schizophrenia and Alzheimer's disease. Anal Bioanal Chem 409:379-394
Hu, Han; Khatri, Kshitij; Zaia, Joseph (2017) Algorithms and design strategies towards automated glycoproteomics analysis. Mass Spectrom Rev 36:475-498
Ji, Yuhuan; Bachschmid, Markus M; Costello, Catherine E et al. (2016) S- to N-Palmitoyl Transfer During Proteomic Sample Preparation. J Am Soc Mass Spectrom 27:677-85
Hu, Han; Khatri, Kshitij; Klein, Joshua et al. (2016) A review of methods for interpretation of glycopeptide tandem mass spectral data. Glycoconj J 33:285-96
Pu, Yi; Ridgeway, Mark E; Glaskin, Rebecca S et al. (2016) Separation and Identification of Isomeric Glycans by Selected Accumulation-Trapped Ion Mobility Spectrometry-Electron Activated Dissociation Tandem Mass Spectrometry. Anal Chem 88:3440-3
Wang, Yun Hwa Walter; Meyer, Rosana D; Bondzie, Philip A et al. (2016) IGPR-1 Is Required for Endothelial Cell-Cell Adhesion and Barrier Function. J Mol Biol 428:5019-5033
Srinivasan, Srimathi; Chitalia, Vipul; Meyer, Rosana D et al. (2015) Hypoxia-induced expression of phosducin-like 3 regulates expression of VEGFR-2 and promotes angiogenesis. Angiogenesis 18:449-62
Yu, Xiang; Sargaeva, Nadezda P; Thompson, Christopher J et al. (2015) In-Source Decay Characterization of Isoaspartate and ?-Peptides. Int J Mass Spectrom 390:101-109
Steinhorn, Benjamin S; Loscalzo, Joseph; Michel, Thomas (2015) Nitroglycerin and Nitric Oxide--A Rondo of Themes in Cardiovascular Therapeutics. N Engl J Med 373:277-80

Showing the most recent 10 out of 253 publications