Fourier transform ion cyclotron resonance mass spectrometry (FTMS) developments and applications to the analysis of glycans, peptidoglycans, and proteoglycans are an important component of this research resource. There are two specific aims for this core project: 1. To design, build, test, and apply a vibrationally cooled matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometer with a mass filtering quadrupole, and collision/accumulation linear ion trap in the front-end ion optics. 2. To build a small 4.7 T FTMS system for testing ICR cells, ion optics, and electronics. During the previous grant period, a high-pressure MALDI FT mass spectrometer was constructed and demonstrated to have significant advantages in cooling labile biomolecule ions that are desorbed in the MALDI experiment. The approach has been used extensively in collaborations, providing a good example of the desired """"""""push-pull"""""""" between technological development and collaboration. Although VC-MALDI-FTMS does cool the vibrational excitation and stabilize, it also cools the MALDI adducts formed from matrix and analyte molecules, causing the MS signal to be distributed over additional components, cluttering the spectra and increasing the space charge. In addition, although MALDI ions can be fragmented in this instrument by IRMPD and SORI-CAD, these ergodic methods select the lowest energy pathway, limiting the information content of the fragmentation and preventing cross-ring cleavages of oligosaccharides. Instrument development such as that proposed in this specific aim is hindered because testing new devices and electronics is slow owing to the extensive pump down that is needed in vacuum recycling. To this end, the construction of a """"""""test-bed"""""""" instrument is proposed.
Showing the most recent 10 out of 253 publications