Investigate whether the signal transduction cascade that down-regulates DNA replication after exposure of cells to ionizing radiation is initiated in the nucleus or in the cytoplasm. In response to ionizing radiation exposure, cells in S-phase down-regulate DNA replication activity by reducing the frequency of replicon initiation. Although this process has been studied extensively over the past forty years, the molecular mechanism is unknown. We have recently provided evidence for the operation of a signal transduction pathway and of the activation of inhibitory factors acting in trans to regulate DNA replication in I irradiated cells(1-3). A complete understanding of the regulatory process requires identification of the target molecules that ultimately mediate the inhibition, identification of the site where the signal activating the signal transduction cascade is generated, and finally identification of the proteins involved in the signal transduction cascade. The site of initiation of regulatory signal transduction cascades induced in response to radiation exposure remains controversial. Experiments using intact, unperturbed cells are required to clarify this initiation site. Measurements of DNA replication offer a useful endpoint that can be used to quantitat the response. The Columbia Alpha Particle Microbeam offers unique opportunities to probe these issues.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
1P41RR011623-01A1
Application #
5225999
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
1
Fiscal Year
1996
Total Cost
Indirect Cost
Chai, Y; Calaf, G M; Zhou, H et al. (2013) Radiation induced COX-2 expression and mutagenesis at non-targeted lung tissues of gpt delta transgenic mice. Br J Cancer 108:91-8
Chai, Y; Lam, R K K; Calaf, G M et al. (2013) Radiation-induced non-targeted response in vivo: role of the TGFýý-TGFBR1-COX-2 signalling pathway. Br J Cancer 108:1106-12
Hu, Burong; Grabham, Peter; Nie, Jing et al. (2012) Intrachromosomal changes and genomic instability in site-specific microbeam-irradiated and bystander human-hamster hybrid cells. Radiat Res 177:25-34
Hei, Tom K; Zhao, Yongliang; Zhou, Hongning et al. (2011) Mechanism of radiation carcinogenesis: role of the TGFBI gene and the inflammatory signaling cascade. Adv Exp Med Biol 720:163-70
Hei, Tom K; Ballas, Leslie K; Brenner, David J et al. (2009) Advances in radiobiological studies using a microbeam. J Radiat Res 50 Suppl A:A7-A12
Chai, Yunfei; Hei, Tom K (2008) Radiation Induced Bystander Effect in vivo. Acta Med Nagasaki 53:S65-S69
Brenner, David J (2008) The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large doses per fraction. Semin Radiat Oncol 18:234-9
Hei, Tom K; Zhou, Hongning; Ivanov, Vladimir N et al. (2008) Mechanism of radiation-induced bystander effects: a unifying model. J Pharm Pharmacol 60:943-50
Ponnaiya, Brian; Jenkins-Baker, Gloria; Randers-Pherson, Gerhard et al. (2007) Quantifying a bystander response following microbeam irradiation using single-cell RT-PCR analyses. Exp Hematol 35:64-8
Hei, Tom K (2006) Cyclooxygenase-2 as a signaling molecule in radiation-induced bystander effect. Mol Carcinog 45:455-60

Showing the most recent 10 out of 64 publications