This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.During every cell cycle, chromosomes must be accurately partitioned to daughter cells to prevent genomic instability and aneuploidy, a hallmark of all tumors and many birth defects. Chromosomes segregate using their kinetochores, the specialized protein structures that are assembled on centromeric DNA sequences and mediate attachment to the spindle. One hallmark of all eukaryotic kinetochores is an essential centromeric histone H3 (CenH3) variant that localizes exclusively to centromeres and replaces canonical histone H3 in centromeric nucleosomes. Because centromeric DNA sequences are not conserved, CenH3 has been proposed to be the epigenetic component that specifies the site of kinetochore assembly. Although CenH3 is an essential component of all kinetochores and is required for centromeric chromatin structure, little is known about CenH3 incorporation into centromeric DNA. We therefore propose to purify the budding yeast CenH3, Cse4, to identify interacting proteins that may regulate its exclusive deposition at the centromere.
Showing the most recent 10 out of 583 publications