This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.Primary cilia play an important, but as yet, undefined role in a wide variety of developmental and pathological processes. Central to these functions is the ability to polarize a cell and produce the microtubule-based projection. In the green algae, Chlamydomonas Reinhardtii, a process termed intraflagellar transport is responsible for the establishing and maintaining flagella. Some of the mammalian equivalents have now been shown to perform a similar function in vivo and produce pathologies such as polydactyly, cystic kidneys and degenerative blindness seen in a variety of human diseases (e.g. Bardet-Beidl syndrome, Polycystic Kidney disease and Nephronophthsis).As yet, there does not exist a well-defined proteomic catalogue of the intraflagellar transport machinery in mammalian cells. Moreover, this transport machinery will also be linked to cargos destined for the cilium, such as receptors, signaling proteins and structural factors, and the motors responsible for the transport process.To this end, we have generated a murine kidney epithelial cell line, one that produces cilia at high propensity, stably expressing a tandem affinity fusion to an IFT component. This cell line will be used to generate substantial material from which IFT complexes will be purified and analyzed by mass spectrometry.In parallel with the proteomic analysis, we are also carrying out microscopic analyses to visualize the process of Intraflagellar Transport and identify the dynamics of transport and their relation to establishing the primary cilium and its maintenance.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR011823-13
Application #
7723702
Study Section
Special Emphasis Panel (ZRG1-CB-H (40))
Project Start
2008-09-01
Project End
2009-08-31
Budget Start
2008-09-01
Budget End
2009-08-31
Support Year
13
Fiscal Year
2008
Total Cost
$819
Indirect Cost
Name
University of Washington
Department
Biochemistry
Type
Schools of Medicine
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Xavier, Marina Amaral; Tirloni, Lucas; Pinto, Antônio F M et al. (2018) A proteomic insight into vitellogenesis during tick ovary maturation. Sci Rep 8:4698
Hollmann, Taylor; Kim, Tae Kwon; Tirloni, Lucas et al. (2018) Identification and characterization of proteins in the Amblyomma americanum tick cement cone. Int J Parasitol 48:211-224
Stieg, David C; Willis, Stephen D; Ganesan, Vidyaramanan et al. (2018) A complex molecular switch directs stress-induced cyclin C nuclear release through SCFGrr1-mediated degradation of Med13. Mol Biol Cell 29:363-375
Seixas, Adriana; Alzugaray, María Fernanda; Tirloni, Lucas et al. (2018) Expression profile of Rhipicephalus microplus vitellogenin receptor during oogenesis. Ticks Tick Borne Dis 9:72-81
Wang, Zheng; Wu, Catherine; Aslanian, Aaron et al. (2018) Defective RNA polymerase III is negatively regulated by the SUMO-Ubiquitin-Cdc48 pathway. Elife 7:
Luhtala, Natalie; Aslanian, Aaron; Yates 3rd, John R et al. (2017) Secreted Glioblastoma Nanovesicles Contain Intracellular Signaling Proteins and Active Ras Incorporated in a Farnesylation-dependent Manner. J Biol Chem 292:611-628
Thakar, Sonal; Wang, Liqing; Yu, Ting et al. (2017) Evidence for opposing roles of Celsr3 and Vangl2 in glutamatergic synapse formation. Proc Natl Acad Sci U S A 114:E610-E618
Jin, Meiyan; Fuller, Gregory G; Han, Ting et al. (2017) Glycolytic Enzymes Coalesce in G Bodies under Hypoxic Stress. Cell Rep 20:895-908
Ogami, Koichi; Richard, Patricia; Chen, Yaqiong et al. (2017) An Mtr4/ZFC3H1 complex facilitates turnover of unstable nuclear RNAs to prevent their cytoplasmic transport and global translational repression. Genes Dev 31:1257-1271
Ju Lee, Hyun; Bartsch, Deniz; Xiao, Cally et al. (2017) A post-transcriptional program coordinated by CSDE1 prevents intrinsic neural differentiation of human embryonic stem cells. Nat Commun 8:1456

Showing the most recent 10 out of 583 publications