This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The long term goal of this project is to understand how ribosomes are assembled in eukaryotes. We use the yeast Saccharomyces cerevisiae, to facilitate combined genetic, molecular biological, biochemical, and proteomic approaches. Ribosome assembly initiates in the nucleolus, where rRNA is transcribed, associates with ribosomal proteins, and undergoes modification and initial processing to begin to form mature ribosomal RNPs. Subsequent steps in maturation of preribosomal particles occur upon their release from the nucleolus to the nucleoplasm and upon their export to the cytoplasm. This assembly pathway requires a dynamic series of remodeling steps in which protein-protein, RNA-protein, and RNA-RNA interactions are established, disrupted and reconfigured. Dysregulation of this pathway in humans leads to many diseases related to alterations in cell growth or proliferation, including cancer. Screens for yeast mutants defective in ribosome biogenesis, and development of methods to purify ribosome assembly intermediates and identify their constituents, led to the identification of >170 trans-acting factors required for ribosome assembly. Central to understand the mechanisms of ribosome biogenesis will be to figure out the precise roles played by each of these assembly factors. Which of them contacts pre-rRNA? Which proteins interact with each other? Can one define assembly neighborhoods within the nascent rRNPs, as observed for prokaryotic ribosomes assembled in vitro? In what order do these factors associate with preribosomes, carry out their functions, then dissociate from the particles? By what means are assembly factors and ribosomal proteins recruited to pre-ribosomes, activated, then released from the pre-rRNPs? Experiments are proposed to address these questions. We are focusing on two particular consecutive steps in the maturation of precursors to mature 60S ribosomal subunits--maturation of the 66SA3 assembly intermediates, followed by the 66SB particles. To begin to establish paradigms for mechanisms of factor function, we will address the above questions for several factors required for these two steps in assembly. In addition, we will investigate in more detail the role of the DEAD-box protein Drs1. Does this putative ATPase enable maturation of 66SB particles, by triggering the release of negative regulators that bind to pre-rRNA and prevent its premature cleavage? The high degree of conservation of molecules involved in eukaryotic ribosome biogenesis promises that principles governing ribosome biogenesis discovered in yeast will provide blueprints to study more diverse modes of regulation of ribosome assembly in metazoans,including those disrupted in many diseases.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR011823-15
Application #
8171347
Study Section
Special Emphasis Panel (ZRG1-CB-H (40))
Project Start
2010-09-01
Project End
2011-08-31
Budget Start
2010-09-01
Budget End
2011-08-31
Support Year
15
Fiscal Year
2010
Total Cost
$22,079
Indirect Cost
Name
University of Washington
Department
Biochemistry
Type
Schools of Medicine
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Xavier, Marina Amaral; Tirloni, Lucas; Pinto, Antônio F M et al. (2018) A proteomic insight into vitellogenesis during tick ovary maturation. Sci Rep 8:4698
Hollmann, Taylor; Kim, Tae Kwon; Tirloni, Lucas et al. (2018) Identification and characterization of proteins in the Amblyomma americanum tick cement cone. Int J Parasitol 48:211-224
Stieg, David C; Willis, Stephen D; Ganesan, Vidyaramanan et al. (2018) A complex molecular switch directs stress-induced cyclin C nuclear release through SCFGrr1-mediated degradation of Med13. Mol Biol Cell 29:363-375
Seixas, Adriana; Alzugaray, María Fernanda; Tirloni, Lucas et al. (2018) Expression profile of Rhipicephalus microplus vitellogenin receptor during oogenesis. Ticks Tick Borne Dis 9:72-81
Wang, Zheng; Wu, Catherine; Aslanian, Aaron et al. (2018) Defective RNA polymerase III is negatively regulated by the SUMO-Ubiquitin-Cdc48 pathway. Elife 7:
Luhtala, Natalie; Aslanian, Aaron; Yates 3rd, John R et al. (2017) Secreted Glioblastoma Nanovesicles Contain Intracellular Signaling Proteins and Active Ras Incorporated in a Farnesylation-dependent Manner. J Biol Chem 292:611-628
Thakar, Sonal; Wang, Liqing; Yu, Ting et al. (2017) Evidence for opposing roles of Celsr3 and Vangl2 in glutamatergic synapse formation. Proc Natl Acad Sci U S A 114:E610-E618
Jin, Meiyan; Fuller, Gregory G; Han, Ting et al. (2017) Glycolytic Enzymes Coalesce in G Bodies under Hypoxic Stress. Cell Rep 20:895-908
Ogami, Koichi; Richard, Patricia; Chen, Yaqiong et al. (2017) An Mtr4/ZFC3H1 complex facilitates turnover of unstable nuclear RNAs to prevent their cytoplasmic transport and global translational repression. Genes Dev 31:1257-1271
Ju Lee, Hyun; Bartsch, Deniz; Xiao, Cally et al. (2017) A post-transcriptional program coordinated by CSDE1 prevents intrinsic neural differentiation of human embryonic stem cells. Nat Commun 8:1456

Showing the most recent 10 out of 583 publications