This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.Neurotoxicity in Alzheimer disease is attributed to proteolytic fragments of amyloid precursor protein (APP). The carboxy terminal fragments of APP (CTFs) have been found in AD patients` brain and reported to exhibit higher neurotoxicity than beta-amyloid. The CTFs are shown to be in the center of a complex protein-protein network involving interactions with phosphotyrosine binding (PTB) domain and Src homology 2 (SH2) domain containing proteins. Fe65, one of the cytoplasmic neural protein having PTB and WW domains, interacts with APP-CTFs and translocate into the nucleus. It is important to determine the atomic structures of different domains of the adopter-like protein, Fe65, to understand the role of these domains in protein-protein interaction and also in nuclear translocation of APP-CTFs and subsequent transcription activation. One of the interaction domains, a small 38 amino acid peptide called WW domain was over-expressed in E.coli. The purified protein was crystallized in native form as well as co-crystallized with short peptides from their binding partners. Because of the long c axis, we could collect only 3 & data set at in-house diffractometer, even though the crystals diffract to better than 2.5 & resolution. The Se-Met derivative crystallizes under identical condition as native crystals and 5 mM DTT and reducing agent. Se-Met crystals grow to approximately 250x100x100 microns in 3-7 days. Synchrotron beam-time at a MAD line is essential for us to solve this important protein domain by collecting MAD data set for the Se-Met crystal and also high resolution native data sets for the co-crystals with different peptides. The structure will be solved by Se-MAD.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR012408-11
Application #
7602325
Study Section
Special Emphasis Panel (ZRG1-PC (02))
Project Start
2007-07-01
Project End
2008-06-30
Budget Start
2007-07-01
Budget End
2008-06-30
Support Year
11
Fiscal Year
2007
Total Cost
$4,094
Indirect Cost
Name
Brookhaven National Laboratory
Department
Type
DUNS #
027579460
City
Upton
State
NY
Country
United States
Zip Code
11973
Sui, Xuewu; Farquhar, Erik R; Hill, Hannah E et al. (2018) Preparation and characterization of metal-substituted carotenoid cleavage oxygenases. J Biol Inorg Chem 23:887-901
Jacques, Benoit; Coinçon, Mathieu; Sygusch, Jurgen (2018) Active site remodeling during the catalytic cycle in metal-dependent fructose-1,6-bisphosphate aldolases. J Biol Chem 293:7737-7753
Fuller, Franklin D; Gul, Sheraz; Chatterjee, Ruchira et al. (2017) Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers. Nat Methods 14:443-449
Wangkanont, Kittikhun; Winton, Valerie J; Forest, Katrina T et al. (2017) Conformational Control of UDP-Galactopyranose Mutase Inhibition. Biochemistry 56:3983-3992
VanderLinden, Ryan T; Hemmis, Casey W; Yao, Tingting et al. (2017) Structure and energetics of pairwise interactions between proteasome subunits RPN2, RPN13, and ubiquitin clarify a substrate recruitment mechanism. J Biol Chem 292:9493-9504
Song, Lingshuang; Yang, Lin; Meng, Jie et al. (2017) Thermodynamics of Hydrophobic Amino Acids in Solution: A Combined Experimental-Computational Study. J Phys Chem Lett 8:347-351
Orlova, Natalia; Gerding, Matthew; Ivashkiv, Olha et al. (2017) The replication initiator of the cholera pathogen's second chromosome shows structural similarity to plasmid initiators. Nucleic Acids Res 45:3724-3737
Firestone, Ross S; Cameron, Scott A; Karp, Jerome M et al. (2017) Heat Capacity Changes for Transition-State Analogue Binding and Catalysis with Human 5'-Methylthioadenosine Phosphorylase. ACS Chem Biol 12:464-473
Arturo, Emilia C; Gupta, Kushol; Héroux, Annie et al. (2016) First structure of full-length mammalian phenylalanine hydroxylase reveals the architecture of an autoinhibited tetramer. Proc Natl Acad Sci U S A 113:2394-9
McMillan, Brian J; Tibbe, Christine; Jeon, Hyesung et al. (2016) Electrostatic Interactions between Elongated Monomers Drive Filamentation of Drosophila Shrub, a Metazoan ESCRT-III Protein. Cell Rep 16:1211-1217

Showing the most recent 10 out of 167 publications