This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.Cyclic nucleotide phosphodiesterases (PDEs) are enzymes controlling cellular concentration of second messangers cAMP and cGMP. Twenty one human genes of PDE encode over eighty isoforms that can be categorized into elevent families. All PDEs contain a conserved catalytic domain with about 300 amino acids, but each PDE family possesses its specific substrates and selective inhibitors. Family-selective inhibitors of PDEs have been widely studied as therapeutics for treatment of various human diseases. For example, the PDE5 inhibitors sildenafil (Viagra), vardenafil (Levitra), and tadalafil (Cialis) are drugs for treatment of male erectile dysfunction and PDE4 inhibitors have been studied for treatment of asthma and chronic obstructive pulmonary disease. For the wide medical applications, PDE has received intensive attention from both academic and industrial groups. However, it remains unknown how the conserved catalytic domains of the PDE families selectively recognize their preferred substrates and inhibitors. This project targets to collect about ten data sets on PDE10 in complex with substrate analogs and on PDE4 in complex with selective inhibitors. The inactive PDE10 mutant in complex with cAMP or cGMP will show how these two substrates bind commonly and differently to the active site, thus an insight into substrate specificity. The PDE4 structures in complex with a subfamily-selective inhibitor and with flavonoids will not only illustrate the PDE4 subfamily selectivity, but also provide a basis for development of a novel class of PDE4 inhibitors.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR012408-12
Application #
7726235
Study Section
Special Emphasis Panel (ZRG1-BCMB-R (40))
Project Start
2008-09-18
Project End
2009-06-30
Budget Start
2008-09-18
Budget End
2009-06-30
Support Year
12
Fiscal Year
2008
Total Cost
$4,575
Indirect Cost
Name
Brookhaven National Laboratory
Department
Type
DUNS #
027579460
City
Upton
State
NY
Country
United States
Zip Code
11973
Sui, Xuewu; Farquhar, Erik R; Hill, Hannah E et al. (2018) Preparation and characterization of metal-substituted carotenoid cleavage oxygenases. J Biol Inorg Chem 23:887-901
Jacques, Benoit; Coinçon, Mathieu; Sygusch, Jurgen (2018) Active site remodeling during the catalytic cycle in metal-dependent fructose-1,6-bisphosphate aldolases. J Biol Chem 293:7737-7753
Fuller, Franklin D; Gul, Sheraz; Chatterjee, Ruchira et al. (2017) Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers. Nat Methods 14:443-449
Wangkanont, Kittikhun; Winton, Valerie J; Forest, Katrina T et al. (2017) Conformational Control of UDP-Galactopyranose Mutase Inhibition. Biochemistry 56:3983-3992
VanderLinden, Ryan T; Hemmis, Casey W; Yao, Tingting et al. (2017) Structure and energetics of pairwise interactions between proteasome subunits RPN2, RPN13, and ubiquitin clarify a substrate recruitment mechanism. J Biol Chem 292:9493-9504
Song, Lingshuang; Yang, Lin; Meng, Jie et al. (2017) Thermodynamics of Hydrophobic Amino Acids in Solution: A Combined Experimental-Computational Study. J Phys Chem Lett 8:347-351
Orlova, Natalia; Gerding, Matthew; Ivashkiv, Olha et al. (2017) The replication initiator of the cholera pathogen's second chromosome shows structural similarity to plasmid initiators. Nucleic Acids Res 45:3724-3737
Firestone, Ross S; Cameron, Scott A; Karp, Jerome M et al. (2017) Heat Capacity Changes for Transition-State Analogue Binding and Catalysis with Human 5'-Methylthioadenosine Phosphorylase. ACS Chem Biol 12:464-473
Tajima, Nami; Karakas, Erkan; Grant, Timothy et al. (2016) Activation of NMDA receptors and the mechanism of inhibition by ifenprodil. Nature 534:63-8
Ericson, Daniel L; Yin, Xingyu; Scalia, Alexander et al. (2016) Acoustic Methods to Monitor Protein Crystallization and to Detect Protein Crystals in Suspensions of Agarose and Lipidic Cubic Phase. J Lab Autom 21:107-14

Showing the most recent 10 out of 167 publications