This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.X-ray crystallography is a powerful tool for structure determination of RNA structure, RNA-protein and DNA-protein complexes with high resolution. Derivatization with heavy atoms for phase determination, a long-standing problem in X-ray crystallography, however, has largely slowed down structural determination of nucleic acids with novel folds. One approach to facilitate the structure determination is to label nucleic acids with covalently linked heavy atoms, which enable phase and structure determination. We have developed a novel strategy to derivatize RNA and DNA by replacing oxygen with selenium, and this principle has been demonstrated by X-ray crystallography using MAD phasing method. We are derivatizing DNA and catalytic and binding RNA sequences with novel folds, via chemical and enzymatic synthesis, for X-ray crystallographic studies of nucleic acids and their protein complexes.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR012408-12
Application #
7726253
Study Section
Special Emphasis Panel (ZRG1-BCMB-R (40))
Project Start
2008-09-18
Project End
2009-06-30
Budget Start
2008-09-18
Budget End
2009-06-30
Support Year
12
Fiscal Year
2008
Total Cost
$24,104
Indirect Cost
Name
Brookhaven National Laboratory
Department
Type
DUNS #
027579460
City
Upton
State
NY
Country
United States
Zip Code
11973
Sui, Xuewu; Farquhar, Erik R; Hill, Hannah E et al. (2018) Preparation and characterization of metal-substituted carotenoid cleavage oxygenases. J Biol Inorg Chem 23:887-901
Jacques, Benoit; Coinçon, Mathieu; Sygusch, Jurgen (2018) Active site remodeling during the catalytic cycle in metal-dependent fructose-1,6-bisphosphate aldolases. J Biol Chem 293:7737-7753
Fuller, Franklin D; Gul, Sheraz; Chatterjee, Ruchira et al. (2017) Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers. Nat Methods 14:443-449
Wangkanont, Kittikhun; Winton, Valerie J; Forest, Katrina T et al. (2017) Conformational Control of UDP-Galactopyranose Mutase Inhibition. Biochemistry 56:3983-3992
VanderLinden, Ryan T; Hemmis, Casey W; Yao, Tingting et al. (2017) Structure and energetics of pairwise interactions between proteasome subunits RPN2, RPN13, and ubiquitin clarify a substrate recruitment mechanism. J Biol Chem 292:9493-9504
Song, Lingshuang; Yang, Lin; Meng, Jie et al. (2017) Thermodynamics of Hydrophobic Amino Acids in Solution: A Combined Experimental-Computational Study. J Phys Chem Lett 8:347-351
Orlova, Natalia; Gerding, Matthew; Ivashkiv, Olha et al. (2017) The replication initiator of the cholera pathogen's second chromosome shows structural similarity to plasmid initiators. Nucleic Acids Res 45:3724-3737
Firestone, Ross S; Cameron, Scott A; Karp, Jerome M et al. (2017) Heat Capacity Changes for Transition-State Analogue Binding and Catalysis with Human 5'-Methylthioadenosine Phosphorylase. ACS Chem Biol 12:464-473
Arturo, Emilia C; Gupta, Kushol; Héroux, Annie et al. (2016) First structure of full-length mammalian phenylalanine hydroxylase reveals the architecture of an autoinhibited tetramer. Proc Natl Acad Sci U S A 113:2394-9
McMillan, Brian J; Tibbe, Christine; Jeon, Hyesung et al. (2016) Electrostatic Interactions between Elongated Monomers Drive Filamentation of Drosophila Shrub, a Metazoan ESCRT-III Protein. Cell Rep 16:1211-1217

Showing the most recent 10 out of 167 publications