This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Lignin is the most abundant terrestrial biopolymer after cellulose. Lignin precursors are exclusively methylated at their meta-positions (i.e., 3/5-OH) of the phenyl rings, and are precluded from the substitution at the para-hydroxyl position;in fact, the para-hydroxyls of monolignols are proposed to be critically important for generating oxidative radicals, and cross-linking lignin units. Therefore, methylation of the para-hydroxyl (i.e., 4-OH) position of monolignol should interfere with the synthesis of the lignin polymer. To test this hypothesis, we propose a structure-based protein engineering approach, to investigate the molecular mechanisms of regiospecific O-methylation of lignin precursors and natural phenylpropenes, thereby, to create a set of novel monolignol 4-O-methyltransferases that will introduce the non-natural para-methoxyl monolignols in planta. Specifically, we will explore the structure-function relationships of two types of functionally distinct but structurally related enzymes, viz., phenylpropene 4-O-methyltransferase and lignin 3/5-O-methyltransferase, to understand the distinct regiospecific methylation and substrate discrimination. The resulting information will be used to create comprehensive libraries of the variants of lignin 3/5-O-methyltransferase and phenylpropene 4-O-methyltransferase, employing both the approaches of structure-based rational design and the directed protein evolution. With high-throughput colorimetric screening, we will select a range of novel variants able to efficiently methylate the para-hydroxyl of the different monolignols. Information from these studies will provide a scientific underpinning for the rational manipulation of lignin biosynthesis to improve the efficiency of biofuel production, and thus contribute to decreasing our dependence on petrochemical fuels.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR012408-14
Application #
8170616
Study Section
Special Emphasis Panel (ZRG1-BCMB-R (40))
Project Start
2010-07-01
Project End
2011-06-30
Budget Start
2010-07-01
Budget End
2011-06-30
Support Year
14
Fiscal Year
2010
Total Cost
$6,332
Indirect Cost
Name
Brookhaven National Laboratory
Department
Type
DUNS #
027579460
City
Upton
State
NY
Country
United States
Zip Code
11973
Jacques, Benoit; Coinçon, Mathieu; Sygusch, Jurgen (2018) Active site remodeling during the catalytic cycle in metal-dependent fructose-1,6-bisphosphate aldolases. J Biol Chem 293:7737-7753
Sui, Xuewu; Farquhar, Erik R; Hill, Hannah E et al. (2018) Preparation and characterization of metal-substituted carotenoid cleavage oxygenases. J Biol Inorg Chem 23:887-901
Fuller, Franklin D; Gul, Sheraz; Chatterjee, Ruchira et al. (2017) Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers. Nat Methods 14:443-449
Wangkanont, Kittikhun; Winton, Valerie J; Forest, Katrina T et al. (2017) Conformational Control of UDP-Galactopyranose Mutase Inhibition. Biochemistry 56:3983-3992
VanderLinden, Ryan T; Hemmis, Casey W; Yao, Tingting et al. (2017) Structure and energetics of pairwise interactions between proteasome subunits RPN2, RPN13, and ubiquitin clarify a substrate recruitment mechanism. J Biol Chem 292:9493-9504
Song, Lingshuang; Yang, Lin; Meng, Jie et al. (2017) Thermodynamics of Hydrophobic Amino Acids in Solution: A Combined Experimental-Computational Study. J Phys Chem Lett 8:347-351
Orlova, Natalia; Gerding, Matthew; Ivashkiv, Olha et al. (2017) The replication initiator of the cholera pathogen's second chromosome shows structural similarity to plasmid initiators. Nucleic Acids Res 45:3724-3737
Firestone, Ross S; Cameron, Scott A; Karp, Jerome M et al. (2017) Heat Capacity Changes for Transition-State Analogue Binding and Catalysis with Human 5'-Methylthioadenosine Phosphorylase. ACS Chem Biol 12:464-473
Tajima, Nami; Karakas, Erkan; Grant, Timothy et al. (2016) Activation of NMDA receptors and the mechanism of inhibition by ifenprodil. Nature 534:63-8
Ericson, Daniel L; Yin, Xingyu; Scalia, Alexander et al. (2016) Acoustic Methods to Monitor Protein Crystallization and to Detect Protein Crystals in Suspensions of Agarose and Lipidic Cubic Phase. J Lab Autom 21:107-14

Showing the most recent 10 out of 167 publications