This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.Original Description:
The aim of this project is to develop a specific 14C-postlabelling assay to detect very low levels of a particular type of DNA adduct, O6-methyl deoxyguanosine (O6-MedG). This adduct is one of the less abundant lesions formed by alkylating carcinogens, has been detected at levels of 1 adduct/10^8 nucleotides by 32P-postlabelling and is known to be mutagenic, recombinogenic and cytotoxic. O6-MedG is formed as a consequence of exposure to methylating agents, nitrosamines present in tobacco smoke, and nitrate treated foods. This assay will therefore provide a valuable tool for the detection of low levels of O6-MedG adducts in human populations exposed to such alkylating adducts.In order that adduct levels can be measured by AMS a procedure has been developed which successfully incorporates 14C-radiolabel into O6-MedG samples (two 14C-acetyl groups) via an acetylation reaction using 14C-acetic anhydride. The acetylation reaction has been developed using a synthesized adduct standard and the decreasing limits of detection determined by HPLC, LC-MS and scintillation counting. The limits of detection by AMS have been established for the 14C-diacetly-O6-MedG adduct standard and if this can now be translated to DNA samples, then the assay can be used to analyze 14C-labelled adduct samples isolated from cultured cells exposed to methylating agents and/or DNA from treated animals. This assay could also be applied to the detection and quantification of other adducts with similar structures in the future.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR013461-09
Application #
7602408
Study Section
Special Emphasis Panel (ZRG1-BPC-M (40))
Project Start
2007-09-01
Project End
2008-08-31
Budget Start
2007-09-01
Budget End
2008-08-31
Support Year
9
Fiscal Year
2007
Total Cost
$25,538
Indirect Cost
Name
Lawrence Livermore National Laboratory
Department
Biology
Type
Organized Research Units
DUNS #
827171463
City
Livermore
State
CA
Country
United States
Zip Code
94550
Sahoo, Pabitra K; Smith, Deanna S; Perrone-Bizzozero, Nora et al. (2018) Axonal mRNA transport and translation at a glance. J Cell Sci 131:
Wang, Zhican; Fang, Ying; Teague, Juli et al. (2017) In Vitro Metabolism of Oprozomib, an Oral Proteasome Inhibitor: Role of Epoxide Hydrolases and Cytochrome P450s. Drug Metab Dispos 45:712-720
Wan, Debin; Yang, Jun; Barnych, Bogdan et al. (2017) A new sensitive LC/MS/MS analysis of vitamin D metabolites using a click derivatization reagent, 2-nitrosopyridine. J Lipid Res 58:798-808
Zimmermann, Maike; Wang, Si-Si; Zhang, Hongyong et al. (2017) Microdose-Induced Drug-DNA Adducts as Biomarkers of Chemotherapy Resistance in Humans and Mice. Mol Cancer Ther 16:376-387
Stornetta, Alessia; Zimmermann, Maike; Cimino, George D et al. (2017) DNA Adducts from Anticancer Drugs as Candidate Predictive Markers for Precision Medicine. Chem Res Toxicol 30:388-409
Wang, Si-Si; Zimmermann, Maike; Zhang, Hongyong et al. (2017) A diagnostic microdosing approach to investigate platinum sensitivity in non-small cell lung cancer. Int J Cancer 141:604-613
Kim, Jeffrey; Stewart, Benjamin; Weiss, Robert H (2016) Extraction and Quantification of Tryptophan and Kynurenine from Cultured Cells and Media Using a High Performance Liquid Chromatography (HPLC) System Equipped with an Ultra-Sensitive Diode Array Detector. Bio Protoc 6:
Pan, Amy; Zhang, Hongyong; Li, Yuanpei et al. (2016) Disulfide-crosslinked nanomicelles confer cancer-specific drug delivery and improve efficacy of paclitaxel in bladder cancer. Nanotechnology 27:425103
Wang, Sisi; Zhang, Hongyong; Scharadin, Tiffany M et al. (2016) Molecular Dissection of Induced Platinum Resistance through Functional and Gene Expression Analysis in a Cell Culture Model of Bladder Cancer. PLoS One 11:e0146256
McCartt, A D; Ognibene, T; Bench, G et al. (2015) Measurements of Carbon-14 With Cavity Ring-Down Spectroscopy. Nucl Instrum Methods Phys Res B 361:277-280

Showing the most recent 10 out of 125 publications