This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The National Alliance for Medical Imaging Computing (NAMIC) is a multi-institutional, interdisciplinary team of computer scientists, software engineers, and medical investigators who develop computational tools for the analysis and visualization of medical image data. The purpose of the center is to provide the infrastructure and environment for the development of computational algorithms and open source technologies, and then oversee the training and dissemination of these tools to the medical research community. This world-class software and development environment serves as a foundation for accelerating the development and deployment of computational tools that are readily accessible to the medical research community. The team combines cutting-edge computer vision research (to create medical imaging analysis algorithms) with state-of-the-art software engineering techniques (based on 'extreme' programming techniques in a distributed, open-source environment) to enable computational examination of both basic neuroscience and neurological disorders. In developing this infrastructure resource, the team will significantly expand upon proven open systems technology and platforms. The driving biological projects will come initially from the study of schizophrenia, but the methods will be applicable to many other diseases. The computational tools and open systems technologies and platforms developed by NAMIC will initially be used to study anatomical structures and connectivity patterns in the brain, derangements of which have long been thought to play a role in the etiology of schizophrenia. The overall analysis will occur at a range of scales, and will occur across a range of modalities including diffusion MRI, quantitative EGG, and metabolic and receptor PET, but potentially including microscopic, genomic, and other image data. It will apply to image data from individual patients, and to studies executed across large populations. The data will be taken from subjects across a wide range of time scales and ultimately apply to a broad range of diseases in a broad range of organs.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR013642-09
Application #
7369343
Study Section
Special Emphasis Panel (ZRG1-SSS-X (41))
Project Start
2006-08-01
Project End
2007-07-31
Budget Start
2006-08-01
Budget End
2007-07-31
Support Year
9
Fiscal Year
2006
Total Cost
$10,155
Indirect Cost
Name
University of California Los Angeles
Department
Neurology
Type
Schools of Medicine
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Green, Shulamite A; Hernandez, Leanna M; Bowman, Hilary C et al. (2018) Sensory over-responsivity and social cognition in ASD: Effects of aversive sensory stimuli and attentional modulation on neural responses to social cues. Dev Cogn Neurosci 29:127-139
Green, Shulamite A; Hernandez, Leanna; Bookheimer, Susan Y et al. (2017) Reduced modulation of thalamocortical connectivity during exposure to sensory stimuli in ASD. Autism Res 10:801-809
Yang, Yaling; Joshi, Shantanu H; Jahanshad, Neda et al. (2017) Neural correlates of proactive and reactive aggression in adolescent twins. Aggress Behav 43:230-240
Dennis, Emily L; Rashid, Faisal; Faskowitz, Josh et al. (2017) MAPPING AGE EFFECTS ALONG FIBER TRACTS IN YOUNG ADULTS. Proc IEEE Int Symp Biomed Imaging 2017:101-104
Walsh, Christine M; Ruoff, Leslie; Walker, Kathleen et al. (2017) Sleepless Night and Day, the Plight of Progressive Supranuclear Palsy. Sleep 40:
Kamins, Joshua; Giza, Christopher C (2016) Concussion-Mild Traumatic Brain Injury: Recoverable Injury with Potential for Serious Sequelae. Neurosurg Clin N Am 27:441-52
Agis, Daniel; Goggins, Maria B; Oishi, Kumiko et al. (2016) Picturing the Size and Site of Stroke With an Expanded National Institutes of Health Stroke Scale. Stroke 47:1459-65
Levine, Andrew J; Soontornniyomkij, Virawudh; Achim, Cristian L et al. (2016) Multilevel analysis of neuropathogenesis of neurocognitive impairment in HIV. J Neurovirol 22:431-41
Flournoy, John C; Pfeifer, Jennifer H; Moore, William E et al. (2016) Neural Reactivity to Emotional Faces May Mediate the Relationship Between Childhood Empathy and Adolescent Prosocial Behavior. Child Dev 87:1691-1702
Joshi, Shantanu H; Vizueta, Nathalie; Foland-Ross, Lara et al. (2016) Relationships Between Altered Functional Magnetic Resonance Imaging Activation and Cortical Thickness in Patients With Euthymic Bipolar I Disorder. Biol Psychiatry Cogn Neurosci Neuroimaging 1:507-517

Showing the most recent 10 out of 554 publications