This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Small neuroanatomical differences in the normal brain due to growth and development, aging, sexual dimorphism, laterality, and handedness are observable by MRI but require precise and accurate methods for their detection. Modern MR brain imaging methods provide detailed in vivo information regarding the anatomical structure of individual brains. However, interpretation of these anatomic data has been hindered by the inability to expeditiously quantify morphological differences across individuals. The difficulty lies in two areas. First, images between different individuals must be in a common reference frame, but they are not collected in this fashion. Second, even when registered, normal variation makes comparisons difficult if not impossible. The major focus of this proposal is the development of mathematical representations of neuroanatomical variation of the brain and specific subregions, especially in the hippocampus and temporal lobe. This involves mapping of a single m orphometric atlas to multiple individual target MR image volumes. An atlas is a multivalued spatial array that contains signal values (corresponding to CT, MR and color cryosection images) with their symbolic labels (tissue type, anatomic nomenclature) for all subvolumes of medical and biological significance to the investigation. These representations provide a unique tool for the algorithmic generation of smooth maps from an atlas (template) and its subvolumes onto families of target anatomies being developed in aims 2,3 and 5 of TRD4. In this way, selected morphometric features from groups of normal individuals will be compared. By assessing the performance of these methods in the characterization of normal populations, we will be able to definitively test hypotheses regarding brain substructure changes in abnormal populations that cannot be resolved with present methods. Progress: Working with Dr. Pat Barta we have now implemented the algorithms for automated segmentation of superior temporal areas allowing for the study of normal variation of anatomy as specified in the Vannier grant.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR015241-06
Application #
7420425
Study Section
Special Emphasis Panel (ZRG1-SBIB-K (40))
Project Start
2006-09-01
Project End
2007-08-31
Budget Start
2006-09-01
Budget End
2007-08-31
Support Year
6
Fiscal Year
2006
Total Cost
$12,704
Indirect Cost
Name
Hugo W. Moser Research Institute Kennedy Krieger
Department
Type
DUNS #
155342439
City
Baltimore
State
MD
Country
United States
Zip Code
21205
Aboud, Katherine S; Barquero, Laura A; Cutting, Laurie E (2018) Prefrontal mediation of the reading network predicts intervention response in dyslexia. Cortex 101:96-106
Albert, Marilyn; Zhu, Yuxin; Moghekar, Abhay et al. (2018) Predicting progression from normal cognition to mild cognitive impairment for individuals at 5 years. Brain :
Calabresi, Peter A; van Zijl, Peter Cm (2017) Ultra-high-field (7.0 Tesla and above) MRI is now necessary to make the next step forward in understanding MS pathophysiology - Commentary. Mult Scler 23:376-377
Gross, Alden L; Mungas, Dan M; Leoutsakos, Jeannie-Marie S et al. (2016) Alzheimer's disease severity, objectively determined and measured. Alzheimers Dement (Amst) 4:159-168
Harrison, D M; Li, X; Liu, H et al. (2016) Lesion Heterogeneity on High-Field Susceptibility MRI Is Associated with Multiple Sclerosis Severity. AJNR Am J Neuroradiol 37:1447-53
Bailey, Stephen; Hoeft, Fumiko; Aboud, Katherine et al. (2016) Anomalous gray matter patterns in specific reading comprehension deficit are independent of dyslexia. Ann Dyslexia 66:256-274
Tang, Xiaoying; Holland, Dominic; Dale, Anders M et al. (2015) APOE Affects the Volume and Shape of the Amygdala and the Hippocampus in Mild Cognitive Impairment and Alzheimer's Disease: Age Matters. J Alzheimers Dis 47:645-60
Harrison, Daniel M; Oh, Jiwon; Roy, Snehashis et al. (2015) Thalamic lesions in multiple sclerosis by 7T MRI: Clinical implications and relationship to cortical pathology. Mult Scler 21:1139-50
Matsui, Joy T; Vaidya, Jatin G; Wassermann, Demian et al. (2015) Prefrontal cortex white matter tracts in prodromal Huntington disease. Hum Brain Mapp 36:3717-32
Tang, Xiaoying; Holland, Dominic; Dale, Anders M et al. (2015) Baseline shape diffeomorphometry patterns of subcortical and ventricular structures in predicting conversion of mild cognitive impairment to Alzheimer's disease. J Alzheimers Dis 44:599-611

Showing the most recent 10 out of 371 publications