This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.Reductive unfolding studies of proteins are designed to provide information about intramol. interactions that govern the formation (and stabilization) of the native state and about folding/unfolding pathways. By mutating Tyr92 to G, A, or L in the model protein, bovine pancreatic RNase A, and through analysis of temp. factors and molecular dynamics simulations of the crystal structures of these mutants, it is demonstrated that the markedly different reductive unfolding rates and pathways of RNase A and its structural homolog onconase can be attributed to a single, localized, ring-stacking interaction between Tyr92 and Pro93 in the bovine variant. The fortuitous location of this specific stabilizing interaction in a disulfide-bond-contg. loop region of RNase A results in the localized modulation of protein dynamics that, in turn, enhances the susceptibility of the disulfide bond to redn. leading to an alteration in the reductive unfolding behavior of the homologues. These results have important implications for folding studies involving topol. determinants to obtain folding/unfolding rates and pathways, for protein structure-function prediction through fold recognition, and for predicting proteolytic cleavage sites. Three structures were deposited in the PDB (1YMR, 1YMW, and 1YMN) and the work was published in JACS.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR015301-06A1
Application #
7721213
Study Section
Special Emphasis Panel (ZRG1-BCMB-K (40))
Project Start
2008-05-15
Project End
2009-03-31
Budget Start
2008-05-15
Budget End
2009-03-31
Support Year
6
Fiscal Year
2008
Total Cost
$391
Indirect Cost
Name
Cornell University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
872612445
City
Ithaca
State
NY
Country
United States
Zip Code
14850
Chen, Wenyang; Mandali, Sridhar; Hancock, Stephen P et al. (2018) Multiple serine transposase dimers assemble the transposon-end synaptic complex during IS607-family transposition. Elife 7:
Eichhorn, Catherine D; Yang, Yuan; Repeta, Lucas et al. (2018) Structural basis for recognition of human 7SK long noncoding RNA by the La-related protein Larp7. Proc Natl Acad Sci U S A 115:E6457-E6466
Fallas, Jorge A; Ueda, George; Sheffler, William et al. (2017) Computational design of self-assembling cyclic protein homo-oligomers. Nat Chem 9:353-360
Krotee, Pascal; Rodriguez, Jose A; Sawaya, Michael R et al. (2017) Atomic structures of fibrillar segments of hIAPP suggest tightly mated ?-sheets are important for cytotoxicity. Elife 6:
Dhayalan, Balamurugan; Mandal, Kalyaneswar; Rege, Nischay et al. (2017) Scope and Limitations of Fmoc Chemistry SPPS-Based Approaches to the Total Synthesis of Insulin Lispro via Ester Insulin. Chemistry 23:1709-1716
Uppalapati, Maruti; Lee, Dong Jun; Mandal, Kalyaneswar et al. (2016) A Potent d-Protein Antagonist of VEGF-A is Nonimmunogenic, Metabolically Stable, and Longer-Circulating in Vivo. ACS Chem Biol 11:1058-65
Mandal, Kalyaneswar; Dhayalan, Balamurugan; Avital-Shmilovici, Michal et al. (2016) Crystallization of Enantiomerically Pure Proteins from Quasi-Racemic Mixtures: Structure Determination by X-Ray Diffraction of Isotope-Labeled Ester Insulin and Human Insulin. Chembiochem 17:421-5
Dhayalan, Balamurugan; Fitzpatrick, Ann; Mandal, Kalyaneswar et al. (2016) Efficient Total Chemical Synthesis of (13) C=(18) O Isotopomers of Human Insulin for Isotope-Edited FTIR. Chembiochem 17:415-20
Ardiccioni, Chiara; Clarke, Oliver B; Tomasek, David et al. (2016) Structure of the polyisoprenyl-phosphate glycosyltransferase GtrB and insights into the mechanism of catalysis. Nat Commun 7:10175
Bale, Jacob B; Gonen, Shane; Liu, Yuxi et al. (2016) Accurate design of megadalton-scale two-component icosahedral protein complexes. Science 353:389-94

Showing the most recent 10 out of 407 publications