This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Recent multifrequency ESR studies of spin labeled mutants of T4-lysozyme have shown the existence of two spectral components that have been tentatively ascribed to the existence of more than one stable conformer of the nitroxide tether of the MTSSL spin label. These multifrequency experiments have previously been analyzed by the slowly-relaxing local structure (SRLS) model that includes as distinct entities the overall motion of the protein and the local motion sensed by the spin label. Results at the different frequencies have suggested that there may be a dynamic exchange occurring between the two conformers, such that the spectral effects of the exchange depends on the ESR frequency studied. Dynamic exchange has now been incorporated into the SRLS model, wherein each conformer has its own overall and local rotational dynamics and orienting potential. The exchange process is characterized by the probability of each site and the mean exchange rate. We have studied, in particular, the effects of dynamic exchange for the case of two sites, wherein both sites exhibit very slow overall tumbling, but Site 1 exhibits relatively fast local motion and low local ordering, whereas Site 2 exhibits slow local motion and high local ordering. Due to their different time scales, ESR spectra taken at the higher (lower) frequencies are sensitive to faster (slower) exchange processes.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR016292-09
Application #
7956630
Study Section
Special Emphasis Panel (ZRG1-BCMB-K (40))
Project Start
2009-09-01
Project End
2010-08-31
Budget Start
2009-09-01
Budget End
2010-08-31
Support Year
9
Fiscal Year
2009
Total Cost
$10,865
Indirect Cost
Name
Cornell University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
872612445
City
Ithaca
State
NY
Country
United States
Zip Code
14850
Jain, Rinku; Vanamee, Eva S; Dzikovski, Boris G et al. (2014) An iron-sulfur cluster in the polymerase domain of yeast DNA polymerase ?. J Mol Biol 426:301-8
Pratt, Ashley J; Shin, David S; Merz, Gregory E et al. (2014) Aggregation propensities of superoxide dismutase G93 hotspot mutants mirror ALS clinical phenotypes. Proc Natl Acad Sci U S A 111:E4568-76
Georgieva, Elka R; Borbat, Peter P; Ginter, Christopher et al. (2013) Conformational ensemble of the sodium-coupled aspartate transporter. Nat Struct Mol Biol 20:215-21
Airola, Michael V; Sukomon, Nattakan; Samanta, Dipanjan et al. (2013) HAMP domain conformers that propagate opposite signals in bacterial chemoreceptors. PLoS Biol 11:e1001479
Airola, Michael V; Huh, Doowon; Sukomon, Nattakan et al. (2013) Architecture of the soluble receptor Aer2 indicates an in-line mechanism for PAS and HAMP domain signaling. J Mol Biol 425:886-901
Sun, Yan; Zhang, Ziwei; Grigoryants, Vladimir M et al. (2012) The internal dynamics of mini c TAR DNA probed by electron paramagnetic resonance of nitroxide spin-labels at the lower stem, the loop, and the bulge. Biochemistry 51:8530-41
Smith, Andrew K; Freed, Jack H (2012) Dynamics and ordering of lipid spin-labels along the coexistence curve of two membrane phases: an ESR study. Chem Phys Lipids 165:348-61
Yu, Renyuan Pony; Darmon, Jonathan M; Hoyt, Jordan M et al. (2012) High-Activity Iron Catalysts for the Hydrogenation of Hindered, Unfunctionalized Alkenes. ACS Catal 2:1760-1764
Gaffney, Betty J; Bradshaw, Miles D; Frausto, Stephen D et al. (2012) Locating a lipid at the portal to the lipoxygenase active site. Biophys J 103:2134-44
Dzikovski, Boris; Tipikin, Dmitriy; Freed, Jack (2012) Conformational distributions and hydrogen bonding in gel and frozen lipid bilayers: a high frequency spin-label ESR study. J Phys Chem B 116:6694-706

Showing the most recent 10 out of 72 publications