This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Ebola virus VP35 is a multifunctional protein significant to VP35 virulence and human mortality. It is a part of the viral RNA polymerase complex;also it is responsible for the RNA silencing, suppression and RNA-depended protein kinase inhibition. VP35 is composed of N-terminal coiled-coil region and C-terminal interferon inhibitory domain, which binds dsRNA. Two crystal structures of the C-terminal part of the protein were released in the last two years, with and without bound 8-bp dsRNA. It was found that this domain is monomeric when it is RNA free or else crystallizes as a dimer of dimers when bound to dsRNA. Even though several in vitro as well as in vivo biochemical studies were performed to elucidate the oligomerization states of this protein, there is no structural information on the full length EV VP35. Biochemical methods suggested the existence of at least four oligomeric forms of VP35 (monomer to tetramer, and trimer/tetramer), with some of them responsible for the virulence of the EV. Our goal is to make inquiry into the oligomerization properties of the full length EV VP35 by using pulse dipolar ESR and to follow on to infer its structure with the distance measurements on a set of single and double mutants.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR016292-11
Application #
8364072
Study Section
Special Emphasis Panel (ZRG1-BCMB-K (40))
Project Start
2011-09-01
Project End
2012-08-31
Budget Start
2011-09-01
Budget End
2012-08-31
Support Year
11
Fiscal Year
2011
Total Cost
$6,533
Indirect Cost
Name
Cornell University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
872612445
City
Ithaca
State
NY
Country
United States
Zip Code
14850
Jain, Rinku; Vanamee, Eva S; Dzikovski, Boris G et al. (2014) An iron-sulfur cluster in the polymerase domain of yeast DNA polymerase ?. J Mol Biol 426:301-8
Pratt, Ashley J; Shin, David S; Merz, Gregory E et al. (2014) Aggregation propensities of superoxide dismutase G93 hotspot mutants mirror ALS clinical phenotypes. Proc Natl Acad Sci U S A 111:E4568-76
Georgieva, Elka R; Borbat, Peter P; Ginter, Christopher et al. (2013) Conformational ensemble of the sodium-coupled aspartate transporter. Nat Struct Mol Biol 20:215-21
Airola, Michael V; Sukomon, Nattakan; Samanta, Dipanjan et al. (2013) HAMP domain conformers that propagate opposite signals in bacterial chemoreceptors. PLoS Biol 11:e1001479
Airola, Michael V; Huh, Doowon; Sukomon, Nattakan et al. (2013) Architecture of the soluble receptor Aer2 indicates an in-line mechanism for PAS and HAMP domain signaling. J Mol Biol 425:886-901
Maeda, Kiminori; Lodge, Matthew T J; Harmer, Jeffrey et al. (2012) Electron tunneling in lithium-ammonia solutions probed by frequency-dependent electron spin relaxation studies. J Am Chem Soc 134:9209-18
Georgieva, Elka R; Roy, Aritro S; Grigoryants, Vladimir M et al. (2012) Effect of freezing conditions on distances and their distributions derived from Double Electron Electron Resonance (DEER): a study of doubly-spin-labeled T4 lysozyme. J Magn Reson 216:69-77
Yang, Zhongyu; Liu, Yangping; Borbat, Peter et al. (2012) Pulsed ESR dipolar spectroscopy for distance measurements in immobilized spin labeled proteins in liquid solution. J Am Chem Soc 134:9950-2
Yu, Long-Xi; Dzikovski, Boris G; Freed, Jack H (2012) A protocol for detecting and scavenging gas-phase free radicals in mainstream cigarette smoke. J Vis Exp :e3406
Sun, Yan; Zhang, Ziwei; Grigoryants, Vladimir M et al. (2012) The internal dynamics of mini c TAR DNA probed by electron paramagnetic resonance of nitroxide spin-labels at the lower stem, the loop, and the bulge. Biochemistry 51:8530-41

Showing the most recent 10 out of 72 publications