This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. The analytical glycomics tools we are developing are designed to function as orchestrated collections of data processing modules. This approach allows us to keep up with the rapid pace at which analytical (especially mass spectral) approaches are being developed for glycomics. Oftentimes, new analytical methodology involves using the same hardware and produces data in the same digital format as previous methods. Our modular approach to processing this data allows previously developed tools for data format conversion, identification of relevant spectral features, etc. to be reused in the context of new experimental protocols that generate data containing additional information. It is often necessary to develop new algorithms to extract this new information, which is likely to be encoded in a novel way. However, much of the data processing workflow can be reused if the new algorithms can be integrated with it. Our modules are designed to fit together seamlessly by passing data in well-defined formats that can be easily parsed and interpreted using semantic annotation. To reach our goal of a truly integrated modular approach for processing glycomics data, we have initiated the construction of a glycomics portal that will serve several purposes: (1) act as a repository of information regarding analytical glycomics methodology;(2) provide users with interactive modules (which may be supplied by us or the glycomics community at large) for glycomics data processing;(3) provide access to technology (such as workflow engines and systems for integrating web service) for orchestrating data processing modules to form executable workflows;(4) provide examples of usable workflows;(5) provide standard data representation formats and vocabulary control resources for exchange of data among software modules;(6) provide a forum for the discussion of data processing issues, including bug reports, requests for new data processing modules, hints for effective use of the data processing software, and new ideas for analytical glycomics methods.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR018502-09
Application #
8363047
Study Section
Special Emphasis Panel (ZRG1-CB-L (40))
Project Start
2011-06-01
Project End
2012-05-31
Budget Start
2011-06-01
Budget End
2012-05-31
Support Year
9
Fiscal Year
2011
Total Cost
$34,382
Indirect Cost
Name
University of Georgia
Department
Type
Organized Research Units
DUNS #
004315578
City
Athens
State
GA
Country
United States
Zip Code
30602
Gas-Pascual, Elisabet; Ichikawa, Hiroshi Travis; Sheikh, Mohammed Osman et al. (2018) CRISPR/Cas9 and glycomics tools for Toxoplasma glycobiology. J Biol Chem :
Sheikh, M Osman; Thieker, David; Chalmers, Gordon et al. (2017) O2 sensing-associated glycosylation exposes the F-box-combining site of the Dictyostelium Skp1 subunit in E3 ubiquitin ligases. J Biol Chem 292:18897-18915
Ma, Liang; Chen, Zehua; Huang, Da Wei et al. (2016) Genome analysis of three Pneumocystis species reveals adaptation mechanisms to life exclusively in mammalian hosts. Nat Commun 7:10740
Karumbaiah, Lohitash; Enam, Syed Faaiz; Brown, Ashley C et al. (2015) Chondroitin Sulfate Glycosaminoglycan Hydrogels Create Endogenous Niches for Neural Stem Cells. Bioconjug Chem 26:2336-49
Li, Juan; Murtaugh, Michael P (2015) Functional analysis of porcine reproductive and respiratory syndrome virus N-glycans in infection of permissive cells. Virology 477:82-8
DePaoli-Roach, Anna A; Contreras, Christopher J; Segvich, Dyann M et al. (2015) Glycogen phosphomonoester distribution in mouse models of the progressive myoclonic epilepsy, Lafora disease. J Biol Chem 290:841-50
Dwyer, Chrissa A; Katoh, Toshihiko; Tiemeyer, Michael et al. (2015) Neurons and glia modify receptor protein-tyrosine phosphatase ? (RPTP?)/phosphacan with cell-specific O-mannosyl glycans in the developing brain. J Biol Chem 290:10256-73
Li, Juan; Tao, Shujuan; Orlando, Ron et al. (2015) N-glycosylation profiling of porcine reproductive and respiratory syndrome virus envelope glycoprotein 5. Virology 478:86-98
Gasimli, Leyla; Hickey, Anne Marie; Yang, Bo et al. (2014) Changes in glycosaminoglycan structure on differentiation of human embryonic stem cells towards mesoderm and endoderm lineages. Biochim Biophys Acta 1840:1993-2003
Panin, Vladislav M; Wells, Lance (2014) Protein O-mannosylation in metazoan organisms. Curr Protoc Protein Sci 75:Unit 12.12.

Showing the most recent 10 out of 104 publications